文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

趋势:高通量有序分析实验中表达动态的分段回归分析。

Trendy: segmented regression analysis of expression dynamics in high-throughput ordered profiling experiments.

机构信息

Department of Biostatistics, University of Florida, Gainesville, FL, USA.

Morgridge Institute for Research, Madison, WI, USA.

出版信息

BMC Bioinformatics. 2018 Oct 16;19(1):380. doi: 10.1186/s12859-018-2405-x.


DOI:10.1186/s12859-018-2405-x
PMID:30326833
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6192113/
Abstract

BACKGROUND: High-throughput expression profiling experiments with ordered conditions (e.g. time-course or spatial-course) are becoming more common for studying detailed differentiation processes or spatial patterns. Identifying dynamic changes at both the individual gene and whole transcriptome level can provide important insights about genes, pathways, and critical time points. RESULTS: We present an R package, Trendy, which utilizes segmented regression models to simultaneously characterize each gene's expression pattern and summarize overall dynamic activity in ordered condition experiments. For each gene, Trendy finds the optimal segmented regression model and provides the location and direction of dynamic changes in expression. We demonstrate the utility of Trendy to provide biologically relevant results on both microarray and RNA-sequencing (RNA-seq) datasets. CONCLUSIONS: Trendy is a flexible R package which characterizes gene-specific expression patterns and summarizes changes of global dynamics over ordered conditions. Trendy is freely available on Bioconductor with a full vignette at https://bioconductor.org/packages/release/bioc/html/Trendy.html .

摘要

背景:随着时间进程或空间进程等有序条件的高通量表达谱实验越来越普遍,研究详细的分化过程或空间模式变得更加常见。在个体基因和整个转录组水平上识别动态变化可以提供关于基因、途径和关键时间点的重要见解。

结果:我们提出了一个 R 包 Trendy,它利用分段回归模型来同时描述每个基因的表达模式,并总结有序条件实验中的整体动态活性。对于每个基因,Trendy 都会找到最佳的分段回归模型,并提供表达中动态变化的位置和方向。我们展示了 Trendy 在微阵列和 RNA-seq(RNA-seq)数据集上提供生物学相关结果的实用性。

结论:Trendy 是一个灵活的 R 包,它描述了基因特异性的表达模式,并总结了有序条件下全局动态变化。Trendy 可在 Bioconductor 上免费获得,完整的说明文档可在 https://bioconductor.org/packages/release/bioc/html/Trendy.html 上查看。

相似文献

[1]
Trendy: segmented regression analysis of expression dynamics in high-throughput ordered profiling experiments.

BMC Bioinformatics. 2018-10-16

[2]
SeqGSEA: a Bioconductor package for gene set enrichment analysis of RNA-Seq data integrating differential expression and splicing.

Bioinformatics. 2014-2-17

[3]
iGC-an integrated analysis package of gene expression and copy number alteration.

BMC Bioinformatics. 2017-1-14

[4]
anamiR: integrated analysis of MicroRNA and gene expression profiling.

BMC Bioinformatics. 2019-5-14

[5]
compcodeR--an R package for benchmarking differential expression methods for RNA-seq data.

Bioinformatics. 2014-9-1

[6]
EBSeq-HMM: a Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments.

Bioinformatics. 2015-8-15

[7]
mAPKL: R/ Bioconductor package for detecting gene exemplars and revealing their characteristics.

BMC Bioinformatics. 2015-9-15

[8]
ImpulseDE: detection of differentially expressed genes in time series data using impulse models.

Bioinformatics. 2017-3-1

[9]
GeneExpressionSignature: an R package for discovering functional connections using gene expression signatures.

OMICS. 2013-2

[10]
clusterProfiler: an R package for comparing biological themes among gene clusters.

OMICS. 2012-3-28

引用本文的文献

[1]
Time-course characterization of whole-transcriptome dynamics of HepG2/C3A spheroids and its toxicological implications.

Toxicol Lett. 2024-11

[2]
Integrated Blood Transcriptome and Multi-Tissue Trace Mineral Analyses of Healthy Stocker Cattle Fed Complexed or Inorganic Trace Mineral Supplement.

Animals (Basel). 2024-7-26

[3]
Genome-wide analysis of transcription-coupled repair reveals novel transcription events in Caenorhabditis elegans.

PLoS Genet. 2024-7

[4]
Single-cell profiling reveals transcriptome dynamics during bovine oocyte growth.

BMC Genomics. 2024-4-6

[5]
Genome-wide analysis of transcription-coupled repair reveals novel transcription events in .

bioRxiv. 2024-3-29

[6]
Linked Mutations in the Ebola Virus Polymerase Are Associated with Organ Specific Phenotypes.

Microbiol Spectr. 2023-3-22

[7]
Belayer: Modeling discrete and continuous spatial variation in gene expression from spatially resolved transcriptomics.

Cell Syst. 2022-10-19

[8]
Single-cell generalized trend model (scGTM): a flexible and interpretable model of gene expression trend along cell pseudotime.

Bioinformatics. 2022-8-10

[9]
A Brain Region-Specific Expression Profile for Genes Within Large Introgression Deserts and Under Positive Selection in .

Front Cell Dev Biol. 2022-4-26

[10]
Time Series Transcriptome Analysis in Shoot and Root Tissue During Early Nodulation.

Front Plant Sci. 2022-4-7

本文引用的文献

[1]
Comparative analysis of differential gene expression tools for RNA sequencing time course data.

Brief Bioinform. 2019-1-18

[2]
Species-specific developmental timing is maintained by pluripotent stem cells ex utero.

Dev Biol. 2017-3-15

[3]
Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model.

BMC Bioinformatics. 2016-8-26

[4]
Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm.

Genome Biol. 2016-8-17

[5]
Analysis of embryonic development in the unsequenced axolotl: Waves of transcriptomic upheaval and stability.

Dev Biol. 2017-6-15

[6]
The Molecular Signatures Database (MSigDB) hallmark gene set collection.

Cell Syst. 2015-12-23

[7]
Dynamics in Transcriptomics: Advancements in RNA-seq Time Course and Downstream Analysis.

Comput Struct Biotechnol J. 2015-8-24

[8]
Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments.

Nat Methods. 2015-10

[9]
FunPat: function-based pattern analysis on RNA-seq time series data.

BMC Genomics. 2015

[10]
EBSeq-HMM: a Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments.

Bioinformatics. 2015-8-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索