Suppr超能文献

基于生成对抗网络的中面部骨缺损的虚拟重建。

Virtual reconstruction of midfacial bone defect based on generative adversarial network.

机构信息

State Key Laboratory of Oral Diseases and National Clinical Research Centre for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, 3rd section of Ren Min Nan Road, Chengdu, 610041, China.

Machine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu, 610065, China.

出版信息

Head Face Med. 2022 Jun 27;18(1):19. doi: 10.1186/s13005-022-00325-2.

Abstract

BACKGROUND

The study aims to evaluate the accuracy of the generative adversarial networks (GAN) for reconstructing bony midfacial defects.

METHODS

According to anatomy, the bony midface was divided into five subunit structural regions and artificial defects are manually created on the corresponding CT images. GAN is trained to reconstruct artificial defects to their previous normal shape and tested. The clinical defects are reconstructed by the trained GAN, where the midspan defects were used for qualitative evaluation and the unilateral defects were used for quantitative evaluation. The cosine similarity and the mean error are used to evaluate the accuracy of reconstruction. The Mann-Whitney U test is used to detect whether reconstruction errors were consistent in artificial and unilateral clinical defects.

RESULTS

This study included 518 normal CT data, with 415 in training set and 103 in testing set, and 17 real patient data, with 2 midspan defects and 15 unilateral defects. Reconstruction of midspan clinical defects assessed by experts is acceptable. The cosine similarity in the reconstruction of artificial defects and unilateral clinical defects is 0.97 ± 0.01 and 0.96 ± 0.01, P = 0.695. The mean error in the reconstruction of artificial defects and unilateral clinical defects is 0.59 ± 0.31 mm and 0.48 ± 0.08 mm, P = 0.09.

CONCLUSION

GAN-based virtual reconstruction technology has reached a high accuracy in testing set, and statistical tests suggest that it can achieve similar results in real patient data. This study has preliminarily solved the problem of bony midfacial defect without reference.

摘要

背景

本研究旨在评估生成对抗网络(GAN)对重建骨性面中部缺损的准确性。

方法

根据解剖结构,骨性面中部被分为五个亚单位结构区域,并在相应的 CT 图像上手动创建人工缺陷。GAN 经过训练可将人工缺陷重建为其先前的正常形状,并进行测试。通过训练好的 GAN 对临床缺损进行重建,其中中跨度缺损用于定性评估,单侧缺损用于定量评估。使用余弦相似度和平均误差评估重建的准确性。使用曼-惠特尼 U 检验检测人工和单侧临床缺陷中的重建误差是否一致。

结果

本研究共纳入 518 例正常 CT 数据,其中 415 例用于训练集,103 例用于测试集,以及 17 例真实患者数据,其中 2 例中跨度缺损,15 例单侧缺损。专家评估的中跨度临床缺损重建是可以接受的。人工缺陷和单侧临床缺陷重建的余弦相似度分别为 0.97±0.01 和 0.96±0.01,P=0.695。人工缺陷和单侧临床缺陷重建的平均误差分别为 0.59±0.31mm 和 0.48±0.08mm,P=0.09。

结论

基于 GAN 的虚拟重建技术在测试集中已达到较高的准确性,且统计检验表明其在真实患者数据中也能达到相似的效果。本研究初步解决了无参考骨性面中部缺损的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d658/9235085/d7af81e55454/13005_2022_325_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验