Suppr超能文献

人工智能在乳腺 X 线摄影乳腺癌筛查中的影响。

Impact of artificial intelligence in breast cancer screening with mammography.

机构信息

Department of Radiology, Valenciennes Hospital Center, 114 Avenue Desandrouin, 59300, Valenciennes, France.

Department of Public Health, EA 2694, Lille University, 1 Place de Verdun, 59045, Lille Cedex, France.

出版信息

Breast Cancer. 2022 Nov;29(6):967-977. doi: 10.1007/s12282-022-01375-9. Epub 2022 Jun 28.

Abstract

OBJECTIVES

To demonstrate that radiologists, with the help of artificial intelligence (AI), are able to better classify screening mammograms into the correct breast imaging reporting and data system (BI-RADS) category, and as a secondary objective, to explore the impact of AI on cancer detection and mammogram interpretation time.

METHODS

A multi-reader, multi-case study with cross-over design, was performed, including 314 mammograms. Twelve radiologists interpreted the examinations in two sessions delayed by a 4 weeks wash-out period with and without AI support. For each breast of each mammogram, they had to mark the most suspicious lesion (if any) and assign it with a forced BI-RADS category and a level of suspicion or "continuous BI-RADS 100". Cohen's kappa correlation coefficient evaluating the inter-observer agreement for BI-RADS category per breast, and the area under the receiver operating characteristic curve (AUC), were used as metrics and analyzed.

RESULTS

On average, the quadratic kappa coefficient increased significantly when using AI for all readers [κ = 0.549, 95% CI (0.528-0.571) without AI and κ = 0.626, 95% CI (0.607-0.6455) with AI]. AUC was significantly improved when using AI (0.74 vs 0.77, p = 0.004). Reading time was not significantly affected for all readers (106 s without AI and vs 102 s with AI; p = 0.754).

CONCLUSIONS

When using AI, radiologists were able to better assign mammograms with the correct BI-RADS category without slowing down the interpretation time.

摘要

目的

证明放射科医生在人工智能(AI)的帮助下,能够更好地将筛查性乳房 X 光照片分类到正确的乳房影像报告和数据系统(BI-RADS)类别中;并作为次要目标,探索 AI 对癌症检测和乳房 X 光照片解读时间的影响。

方法

采用多读者、多病例交叉设计进行了一项研究,纳入了 314 例乳房 X 光照片。12 名放射科医生在相隔 4 周的洗脱期内,分两次对这些检查进行解读,一次有 AI 支持,一次没有。对于每张乳房 X 光照片的每只乳房,他们都必须标记出最可疑的病变(如果有),并为其分配强制 BI-RADS 类别和可疑程度(或“连续 BI-RADS 100”)。采用 Cohen 氏 κ 相关系数评估每只乳房的 BI-RADS 类别观察者间一致性,并分析其曲线下面积(AUC)。

结果

平均而言,当所有读者都使用 AI 时,二次 κ 值显著增加[κ=0.549,95%可信区间(0.528-0.571)无 AI 时,κ=0.626,95%可信区间(0.607-0.6455)有 AI 时]。使用 AI 时 AUC 显著提高(0.74 比 0.77,p=0.004)。所有读者的阅读时间均无显著变化(无 AI 时为 106 秒,有 AI 时为 102 秒;p=0.754)。

结论

使用 AI 时,放射科医生能够更好地为乳房 X 光照片分配正确的 BI-RADS 类别,而不会减缓解读时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3369/9587927/d09204c8ca8c/12282_2022_1375_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验