Suppr超能文献

盆腔 U-Net:使用深度监督洗牌注意力卷积神经网络对接受放射治疗的肛门癌患者的危险盆腔器官进行多标签语义分割。

Pelvic U-Net: multi-label semantic segmentation of pelvic organs at risk for radiation therapy anal cancer patients using a deeply supervised shuffle attention convolutional neural network.

机构信息

Radiation Physics, Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden.

Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden.

出版信息

Radiat Oncol. 2022 Jun 28;17(1):114. doi: 10.1186/s13014-022-02088-1.

Abstract

BACKGROUND

Delineation of organs at risk (OAR) for anal cancer radiation therapy treatment planning is a manual and time-consuming process. Deep learning-based methods can accelerate and partially automate this task. The aim of this study was to develop and evaluate a deep learning model for automated and improved segmentations of OAR in the pelvic region.

METHODS

A 3D, deeply supervised U-Net architecture with shuffle attention, referred to as Pelvic U-Net, was trained on 143 computed tomography (CT) volumes, to segment OAR in the pelvic region, such as total bone marrow, rectum, bladder, and bowel structures. Model predictions were evaluated on an independent test dataset (n = 15) using the Dice similarity coefficient (DSC), the 95th percentile of the Hausdorff distance (HD), and the mean surface distance (MSD). In addition, three experienced radiation oncologists rated model predictions on a scale between 1-4 (excellent, good, acceptable, not acceptable). Model performance was also evaluated with respect to segmentation time, by comparing complete manual delineation time against model prediction time without and with manual correction of the predictions. Furthermore, dosimetric implications to treatment plans were evaluated using different dose-volume histogram (DVH) indices.

RESULTS

Without any manual corrections, mean DSC values of 97%, 87% and 94% were found for total bone marrow, rectum, and bladder. Mean DSC values for bowel cavity, all bowel, small bowel, and large bowel were 95%, 91%, 87% and 81%, respectively. Total bone marrow, bladder, and bowel cavity segmentations derived from our model were rated excellent (89%, 93%, 42%), good (9%, 5%, 42%), or acceptable (2%, 2%, 16%) on average. For almost all the evaluated DVH indices, no significant difference between model predictions and manual delineations was found. Delineation time per patient could be reduced from 40 to 12 min, including manual corrections of model predictions, and to 4 min without corrections.

CONCLUSIONS

Our Pelvic U-Net led to credible and clinically applicable OAR segmentations and showed improved performance compared to previous studies. Even though manual adjustments were needed for some predicted structures, segmentation time could be reduced by 70% on average. This allows for an accelerated radiation therapy treatment planning workflow for anal cancer patients.

摘要

背景

肛门癌放射治疗计划中危及器官(OAR)的勾画是一个手动且耗时的过程。基于深度学习的方法可以加速并部分实现这一任务。本研究旨在开发和评估一种用于自动勾画骨盆区域 OAR 的深度学习模型。

方法

使用一种名为 Pelvic U-Net 的 3D 深度监督 U-Net 架构和 Shuffle 注意力,对 143 个 CT 容积进行训练,以勾画骨盆区域的 OAR,如全骨髓、直肠、膀胱和肠道结构。使用 Dice 相似系数(DSC)、Hausdorff 距离(HD)的 95%分位数和平均表面距离(MSD)在独立测试数据集(n=15)上评估模型预测结果。此外,三位经验丰富的放射肿瘤学家对模型预测结果进行了 1-4 分(优秀、良好、可接受、不可接受)的评分。还通过比较完整的手动勾画时间与无手动校正和有手动校正的模型预测时间,评估了模型的分割时间。此外,使用不同的剂量-体积直方图(DVH)指标评估了对治疗计划的剂量学影响。

结果

在没有任何手动校正的情况下,全骨髓、直肠和膀胱的平均 DSC 值分别为 97%、87%和 94%。肠道腔、所有肠道、小肠和大肠的平均 DSC 值分别为 95%、91%、87%和 81%。我们的模型生成的全骨髓、膀胱和肠道腔分割结果平均被评为优秀(89%、93%、42%)、良好(9%、5%、42%)或可接受(2%、2%、16%)。对于几乎所有评估的 DVH 指标,模型预测与手动勾画之间没有显著差异。包括模型预测的手动校正在内,每位患者的勾画时间可从 40 分钟减少到 12 分钟,而无需校正则可减少到 4 分钟。

结论

我们的 Pelvic U-Net 实现了可靠的、临床适用的 OAR 分割,与之前的研究相比,性能有所提高。尽管对于一些预测结构需要进行手动调整,但平均分割时间可减少 70%。这允许加速肛门癌患者的放射治疗计划工作流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3759/9238000/b924aba70701/13014_2022_2088_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验