Suppr超能文献

肺部超声辅助新型冠状病毒肺炎急性呼吸衰竭患者入住重症监护病房的决策过程

Lung Ultrasound to Assist ICU Admission Decision-Making Process of COVID-19 Patients With Acute Respiratory Failure.

作者信息

Aguersif Amazigh, Sarton Benjamine, Bouharaoua Sihem, Gaillard Lucien, Standarovski Denis, Faucoz Orphée, Martin Blondel Guillaume, Khallel Hatem, Thalamas Claire, Sommet Agnes, Riu Béatrice, Morand Eric, Bataille Benoit, Silva Stein

机构信息

Critical Care Unit, University Teaching Hospital of Purpan, Toulouse, France.

Toulouse NeuroImaging Center, Toulouse University, UMR INSERM/UPS 1214, UPS, Toulouse, France.

出版信息

Crit Care Explor. 2022 Jun 8;4(6):e0719. doi: 10.1097/CCE.0000000000000719. eCollection 2022 Jun.

Abstract

UNLABELLED

There is only low-certainty evidence on the use of predictive models to assist COVID-19 patient's ICU admission decision-making process. Accumulative evidence suggests that lung ultrasound (LUS) assessment of COVID-19 patients allows accurate bedside evaluation of lung integrity, with the added advantage of repeatability, absence of radiation exposure, reduced risk of virus dissemination, and low cost. Our goal is to assess the performance of a quantified indicator resulting from LUS data compared with standard clinical practice model to predict critical respiratory illness in the 24 hours following hospital admission.

DESIGN

Prospective cohort study.

SETTING

Critical Care Unit from University Hospital Purpan (Toulouse, France) between July 2020 and March 2021.

PATIENTS

Adult patients for COVID-19 who were in acute respiratory failure (ARF), defined as blood oxygen saturation as measured by pulse oximetry less than 90% while breathing room air or respiratory rate greater than or equal to 30 breaths/min at hospital admission. Linear multivariate models were used to identify factors associated with critical respiratory illness, defined as death or mild/severe acute respiratory distress syndrome (Pao/Fio < 200) in the 24 hours after patient's hospital admission.

INTERVENTION

LUS assessment.

MEASUREMENTS AND MAIN RESULTS

One hundred and forty COVID-19 patients with ARF were studied. This cohort was split into two independent groups: learning sample (first 70 patients) and validation sample (last 70 patients). Interstitial lung water, thickening of the pleural line, and alveolar consolidation detection were strongly associated with patient's outcome. The LUS model predicted more accurately patient's outcomes than the standard clinical practice model (DeLong test: Testing: score = 2.50, value = 0.01; Validation: score = 2.11, value = 0.03).

CONCLUSIONS

LUS assessment of COVID-19 patients with ARF at hospital admission allows a more accurate prediction of the risk of critical respiratory illness than standard clinical practice. These results hold the promise of improving ICU resource allocation process, particularly in the case of massive influx of patients or limited resources, both now and in future anticipated pandemics.

摘要

未标注

关于使用预测模型协助新冠病毒疾病患者入住重症监护病房(ICU)的决策过程,仅有低确定性证据。累积证据表明,对新冠病毒疾病患者进行肺部超声(LUS)评估可在床边准确评估肺完整性,具有可重复性、无辐射暴露、降低病毒传播风险及成本低等额外优势。我们的目标是评估由LUS数据得出的量化指标与标准临床实践模型相比,在预测患者入院后24小时内发生严重呼吸疾病方面的性能。

设计

前瞻性队列研究。

地点

2020年7月至2021年3月期间法国图卢兹普尔潘大学医院的重症监护病房。

患者

因新冠病毒疾病导致急性呼吸衰竭(ARF)的成年患者,急性呼吸衰竭定义为入院时经脉搏血氧饱和度测定的血氧饱和度低于90%,或呼吸频率大于或等于30次/分钟。使用线性多变量模型确定与严重呼吸疾病相关的因素,严重呼吸疾病定义为患者入院后24小时内死亡或发生轻度/重度急性呼吸窘迫综合征(Pao/Fio<200)。

干预措施

LUS评估。

测量指标及主要结果

对140例患有ARF的新冠病毒疾病患者进行了研究。该队列分为两个独立组:学习样本(前70例患者)和验证样本(后7每例患者)。肺间质水、胸膜线增厚和肺泡实变检测与患者预后密切相关。LUS模型比标准临床实践模型更准确地预测了患者的预后(德龙检验:测试:得分=2.50,P值=0.01;验证:得分=2.11,P值=0.03)。

结论

入院时对患有ARF的新冠病毒疾病患者进行LUS评估比标准临床实践能更准确地预测严重呼吸疾病的风险。这些结果有望改善ICU资源分配过程,特别是在患者大量涌入或资源有限的情况下,无论是现在还是未来预期的大流行期间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验