Suppr超能文献

基于机器学习的使用环境数据特征对患有严重智力或多重残疾的儿童运动进行分类。

Machine learning-based classification of the movements of children with profound or severe intellectual or multiple disabilities using environment data features.

机构信息

Faculty of Education, Center of Inclusive Education, Ehime University, Ehime, Japan.

Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan.

出版信息

PLoS One. 2022 Jun 30;17(6):e0269472. doi: 10.1371/journal.pone.0269472. eCollection 2022.

Abstract

Communication interventions have broadened from dialogical meaning-making, assessment approaches, to remote-controlled interactive objects. Yet, interpretation of the mostly pre-or protosymbolic, distinctive, and idiosyncratic movements of children with intellectual disabilities (IDs) or profound intellectual and multiple disabilities (PIMD) using computer-based assistive technology (AT), machine learning (ML), and environment data (ED: location, weather indices and time) remain insufficiently unexplored. We introduce a novel behavior inference computer-based communication-aid AT system structured on machine learning (ML) framework to interpret the movements of children with PIMD/IDs using ED. To establish a stable system, our study aimed to train, cross-validate (10-fold), test and compare the classification accuracy performance of ML classifiers (eXtreme gradient boosting [XGB], support vector machine [SVM], random forest [RF], and neural network [NN]) on classifying the 676 movements to 2, 3, or 7 behavior outcome classes using our proposed dataset recalibration (adding ED to movement datasets) with or without Boruta feature selection (53 child characteristics and movements, and ED-related features). Natural-child-caregiver-dyadic interactions observed in 105 single-dyad video-recorded (30-hour) sessions targeted caregiver-interpreted facial, body, and limb movements of 20 8-to 16-year-old children with PIMD/IDs and simultaneously app-and-sensor-collected ED. Classification accuracy variances and the influences of and the interaction among recalibrated dataset, feature selection, classifiers, and classes on the pooled classification accuracy rates were evaluated using three-way ANOVA. Results revealed that Boruta and NN-trained dataset in class 2 and the non-Boruta SVM-trained dataset in class 3 had >76% accuracy rates. Statistically significant effects indicating high classification rates (>60%) were found among movement datasets: with ED, non-Boruta, class 3, SVM, RF, and NN. Similar trends (>69%) were found in class 2, NN, Boruta-trained movement dataset with ED, and SVM and RF, and non-Boruta-trained movement dataset with ED in class 3. These results support our hypotheses that adding environment data to movement datasets, selecting important features using Boruta, using NN, SVM and RF classifiers, and classifying movements to 2 and 3 behavior outcomes can provide >73.3% accuracy rates, a promising performance for a stable ML-based behavior inference communication-aid AT system for children with PIMD/IDs.

摘要

沟通干预已经从对话意义的构建、评估方法扩展到远程控制的互动对象。然而,使用基于计算机的辅助技术(AT)、机器学习(ML)和环境数据(ED:位置、天气指数和时间)来解释智障(ID)或严重智障和多重残疾(PIMD)儿童的大多数前或原象征、独特和特殊的运动,仍然没有得到充分的探索。我们引入了一种新的基于机器学习(ML)框架的行为推理计算机通信辅助 AT 系统,用于解释 PIMD/ID 儿童的运动。为了建立一个稳定的系统,我们的研究旨在使用 ED 训练、交叉验证(10 折)、测试和比较 ML 分类器(极端梯度提升 [XGB]、支持向量机 [SVM]、随机森林 [RF]和神经网络 [NN])的分类准确性性能,将 676 个运动分类为 2、3 或 7 个行为结果类,使用我们提出的数据集重新校准(将 ED 添加到运动数据集中),同时使用或不使用 Boruta 特征选择(53 个儿童特征和运动以及 ED 相关特征)。在 105 个单对视频记录(30 小时)会话中观察到自然的儿童-照顾者-双元互动,针对 20 名 8 至 16 岁的 PIMD/ID 儿童的照顾者解释的面部、身体和肢体运动,同时应用程序和传感器收集 ED。使用三因素方差分析评估分类准确性方差、重新校准数据集、特征选择、分类器和类之间的相互影响以及对汇总分类准确性的影响。结果表明,在类 2 中 Boruta 和 NN 训练的数据集以及在类 3 中 SVM 训练的非 Boruta 数据集具有 >76%的准确率。在运动数据集之间发现具有统计学意义的显著效果,表明高分类率(>60%):具有 ED、非 Boruta、类 3、SVM、RF 和 NN。在类 2 中也发现了类似的趋势(>69%),在类 2 中也发现了类似的趋势,包括使用 Boruta 选择重要特征的 NN、具有 ED 的 Boruta 训练的运动数据集以及 SVM 和 RF,以及具有 ED 的非 Boruta 训练的运动数据集。这些结果支持我们的假设,即向运动数据集添加环境数据、使用 Boruta 选择重要特征、使用 NN、SVM 和 RF 分类器以及将运动分类为 2 和 3 个行为结果,可以提供>73.3%的准确率,这是为 PIMD/ID 儿童开发基于机器学习的行为推理通信辅助 AT 系统的一个有前途的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ebc/9246124/8e548f498600/pone.0269472.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验