Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, Rheinische Friedrich-Wilhelms-University, Katzenburgweg 5, 53115, Bonn, Germany.
Field Lab Campus Klein-Altendorf, Rheinische Friedrich-Wilhelms-University, Bonn, Germany.
Theor Appl Genet. 2022 Aug;135(8):2833-2848. doi: 10.1007/s00122-022-04152-6. Epub 2022 Jul 1.
The genetic response to changing climatic factors selects consistent across the tested environments and location-specific thermo-sensitive and photoperiod susceptible alleles in lower and higher altitudes, respectively, for starting flowering in winter wheat. Wheat breeders select heading date to match the most favorable conditions for their target environments and this is favored by the extensive genetic variation for this trait that has the potential to be further explored. In this study, we used a germplasm with broad geographic distribution and tested it in multi-location field trials across Germany over three years. The genotypic response to the variation in the climatic parameters depending on location and year uncovered the effect of photoperiod and spring temperatures in accelerating heading date in higher and lower latitudes, respectively. Spring temperature dominates other factors in inducing heading, whereas the higher amount of solar radiation delays it. A genome-wide scan of marker-trait associations with heading date detected two QTL: an adapted allele at locus TaHd102 on chromosome 5A that has a consistent effect on HD in German cultivars in multiple environments and a non-adapted allele at locus TaHd044 on chromosome 3A that accelerates flowering by 5.6 days. TaHd102 and TaHd044 explain 13.8% and 33% of the genetic variance, respectively. The interplay of the climatic variables led to the detection of environment specific association responding to temperature in lower latitudes and photoperiod in higher ones. Another locus TaHd098 on chromosome 5A showed epistatic interactions with 15 known regulators of flowering time when non-adapted cultivars from outside Germany were included in the analysis.
遗传对气候变化因素的响应在不同的测试环境和地理位置选择一致的耐寒和感光敏感等位基因,分别用于启动冬小麦的冬季开花。小麦育种者选择抽穗期以适应其目标环境的最有利条件,这得益于该性状的广泛遗传变异,具有进一步探索的潜力。在这项研究中,我们使用了具有广泛地理分布的种质资源,并在德国的多个地点进行了三年的田间试验。根据地点和年份对气候参数变化的基因型响应揭示了光周期和春季温度分别在高纬度和低纬度加速抽穗期的作用。春季温度在诱导抽穗方面主导着其他因素,而太阳辐射的增加则会延迟它。对标记与抽穗日期相关的全基因组扫描检测到两个 QTL:位于 5A 染色体上的 TaHd102 位点的适应性等位基因,在德国多个环境中的德国品种中对 HD 具有一致的影响,以及位于 3A 染色体上的 TaHd044 位点的非适应性等位基因,它可以将开花时间提前 5.6 天。TaHd102 和 TaHd044 分别解释了 13.8%和 33%的遗传方差。气候变量的相互作用导致了在较低纬度响应温度和在较高纬度响应光周期的特定环境关联的检测。位于 5A 染色体上的另一个 TaHd098 位点在包括德国以外的非适应性品种进行分析时,与 15 个已知的开花时间调节基因表现出上位性互作。