Suppr超能文献

法国首例 COVID-19 疫情的聚类和映射。

Clustering and mapping the first COVID-19 outbreak in France.

机构信息

UMR 7300 ESPACE, CNRS, Aix Marseille Univ, Université Côte d'Azur, Avignon Université, Case 41, 74 rue Louis Pasteur, 84029, Avignon cedex, France.

CNRS, PRODIG, Campus Condorcet, Bat. Recherche Sud, 5 cours des Humanités, 12 rue des Fillettes, 93322, Aubervilliers cedex, France.

出版信息

BMC Public Health. 2022 Jul 1;22(1):1279. doi: 10.1186/s12889-022-13537-7.

Abstract

BACKGROUND

With more than 160 000 confirmed COVID-19 cases and about 30 000 deceased people at the end of June 2020, France was one of the countries most affected by the coronavirus crisis worldwide. We aim to assess the efficiency of global lockdown policy in limiting spatial contamination through an in-depth reanalysis of spatial statistics in France during the first lockdown and immediate post-lockdown phases.

METHODS

To reach that goal, we use an integrated approach at the crossroads of geography, spatial epidemiology, and public health science. To eliminate any ambiguity relevant to the scope of the study, attention focused at first on data quality assessment. The data used originate from official databases (Santé Publique France) and the analysis is performed at a departmental level. We then developed spatial autocorrelation analysis, thematic mapping, hot spot analysis, and multivariate clustering.

RESULTS

We observe the extreme heterogeneity of local situations and demonstrate that clustering and intensity are decorrelated indicators. Thematic mapping allows us to identify five "ghost" clusters, whereas hot spot analysis detects two positive and two negative clusters. Our re-evaluation also highlights that spatial dissemination follows a twofold logic, zonal contiguity and linear development, thus determining a "metastatic" propagation pattern.

CONCLUSIONS

One of the most problematic issues about COVID-19 management by the authorities is the limited capacity to identify hot spots. Clustering of epidemic events is often biased because of inappropriate data quality assessment and algorithms eliminating statistical-spatial outliers. Enhanced detection techniques allow for a better identification of hot and cold spots, which may lead to more effective political decisions during epidemic outbreaks.

摘要

背景

截至 2020 年 6 月底,法国已确诊超过 16 万例 COVID-19 病例,死亡人数约 3 万。法国是全球受冠状病毒危机影响最严重的国家之一。我们旨在通过深入分析法国第一次封锁和封锁后立即阶段的空间统计数据,评估全球封锁政策在限制空间污染方面的效率。

方法

为了实现这一目标,我们在地理、空间流行病学和公共卫生科学的交叉点采用了综合方法。为了消除与研究范围相关的任何歧义,我们首先关注数据质量评估。使用的数据来自官方数据库(法国公共卫生署),分析在省级层面进行。然后,我们进行了空间自相关分析、主题制图、热点分析和多元聚类。

结果

我们观察到局部情况的极端异质性,并证明聚类和强度是不相关的指标。主题制图使我们能够识别出五个“幽灵”集群,而热点分析则检测到两个正集群和两个负集群。我们的重新评估还强调,空间传播遵循双重逻辑,即区域连续性和线性发展,从而决定了“转移性”传播模式。

结论

当局在 COVID-19 管理方面最成问题的问题之一是识别热点的能力有限。由于数据质量评估不当和消除统计空间异常值的算法,疫情事件的聚类往往存在偏差。增强的检测技术可以更好地识别热点和冷点,从而在疫情爆发期间做出更有效的政治决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5430/9248116/9b5b5cf90c02/12889_2022_13537_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验