Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
Department of Genetics & Genome Biology, University of Leicester, Leicester, UK.
Methods Mol Biol. 2022;2513:179-204. doi: 10.1007/978-1-0716-2399-2_11.
Microorganisms offer a tremendous potential as cell factories, and they are indeed been used by humans since the previous centuries for biotransformations. Among them, yeasts combine the advantage of a unicellular state with a eukaryotic organization. Moreover, in the era of biorefineries, their biodiversity can offer solutions to specific process constraints. Zygosaccharomyces bailii, an ascomycete budding yeast, is widely known for its peculiar tolerance to different stresses, among which are organic acids. Moreover, the recent reclassification of the species, including diverse hybrids, is further expanding both fundamental and applied interests. It is therefore reasonable that despite the possibility to apply with this yeast some of the molecular tools and protocols routinely used to manipulate Saccharomyces cerevisiae, adjustments and optimizations are necessary. Here we describe in detail the methods for determining chromosome number, size, and aneuploidy, transformation, classical target gene disruption or gene integration, and designing of episomal expression plasmids helpful for engineering the yeast Z. bailii .
微生物作为细胞工厂具有巨大的潜力,自前几个世纪以来,人类就一直在利用它们进行生物转化。其中,酵母将单细胞状态的优势与真核生物的组织结合在一起。此外,在生物精炼厂的时代,它们的生物多样性可以为特定的工艺限制提供解决方案。接合酵母(Zygosaccharomyces bailii),一种子囊菌出芽酵母,以其对不同压力(包括有机酸)的特殊耐受性而广为人知。此外,该物种的最近重新分类,包括各种杂种,进一步扩大了基础和应用的兴趣。因此,尽管可以使用一些常规用于操纵酿酒酵母(Saccharomyces cerevisiae)的分子工具和方案来应用这种酵母,但需要进行调整和优化。在这里,我们详细描述了确定染色体数、大小和非整倍性、转化、经典靶基因缺失或基因整合以及设计有助于工程化酵母 Z. bailii 的附加型表达质粒的方法。