Suppr超能文献

智能中红外超表面微光谱仪气体传感系统

Smart mid-infrared metasurface microspectrometer gas sensing system.

作者信息

Meng Jiajun, Balendhran Sivacarendran, Sabri Ylias, Bhargava Suresh K, Crozier Kenneth B

机构信息

School of Physics, University of Melbourne, Victoria, Australia.

Australian Research Council (ARC) Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Melbourne, Victoria, Australia.

出版信息

Microsyst Nanoeng. 2024 Jun 7;10:74. doi: 10.1038/s41378-024-00697-2. eCollection 2024.

Abstract

Smart, low-cost and portable gas sensors are highly desired due to the importance of air quality monitoring for environmental and defense-related applications. Traditionally, electrochemical and nondispersive infrared (IR) gas sensors are designed to detect a single specific analyte. Although IR spectroscopy-based sensors provide superior performance, their deployment is limited due to their large size and high cost. In this study, a smart, low-cost, multigas sensing system is demonstrated consisting of a mid-infrared microspectrometer and a machine learning algorithm. The microspectrometer is a metasurface filter array integrated with a commercial IR camera that is consumable-free, compact ( ~ 1 cm) and lightweight ( ~ 1 g). The machine learning algorithm is trained to analyze the data from the microspectrometer and predict the gases present. The system detects the greenhouse gases carbon dioxide and methane at concentrations ranging from 10 to 100% with 100% accuracy. It also detects hazardous gases at low concentrations with an accuracy of 98.4%. Ammonia can be detected at a concentration of 100 ppm. Additionally, methyl-ethyl-ketone can be detected at its permissible exposure limit (200 ppm); this concentration is considered low and nonhazardous. This study demonstrates the viability of using machine learning with IR spectroscopy to provide a smart and low-cost multigas sensing platform.

摘要

由于空气质量监测对于环境和国防相关应用至关重要,因此人们迫切需要智能、低成本且便携的气体传感器。传统上,电化学和非分散红外(IR)气体传感器被设计用于检测单一特定分析物。尽管基于红外光谱的传感器具有卓越的性能,但由于其尺寸大、成本高,其应用受到限制。在本研究中,展示了一种由中红外微型光谱仪和机器学习算法组成的智能、低成本多气体传感系统。该微型光谱仪是一种与商用红外相机集成的超表面滤波器阵列,无需耗材,紧凑(约1厘米)且轻便(约1克)。机器学习算法经过训练,可分析来自微型光谱仪的数据并预测存在的气体。该系统能以100%的准确率检测浓度范围为10%至100%的温室气体二氧化碳和甲烷。它还能以98.4%的准确率检测低浓度的有害气体。氨气可在100 ppm的浓度下被检测到。此外,甲乙酮可在其允许接触限值(200 ppm)下被检测到;该浓度被认为较低且无危害。本研究证明了将机器学习与红外光谱相结合以提供智能且低成本多气体传感平台的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/326b/11156923/dcb389474296/41378_2024_697_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验