Suppr超能文献

贝叶斯 R3 能够实现大规模多性状基因组预测和 QTN 映射分析的快速 MCMC 块处理。

BayesR3 enables fast MCMC blocked processing for largescale multi-trait genomic prediction and QTN mapping analysis.

机构信息

Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.

School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.

出版信息

Commun Biol. 2022 Jul 5;5(1):661. doi: 10.1038/s42003-022-03624-1.

Abstract

Bayesian methods, such as BayesR, for predicting the genetic value or risk of individuals from their genotypes, such as Single Nucleotide Polymorphisms (SNP), are often implemented using a Markov Chain Monte Carlo (MCMC) process. However, the generation of Markov chains is computationally slow. We introduce a form of blocked Gibbs sampling for estimating SNP effects from Markov chains that greatly reduces computational time by sampling each SNP effect iteratively n-times from conditional block posteriors. Subsequent iteration over all blocks m-times produces chains of length m × n. We use this strategy to solve large-scale genomic prediction and fine-mapping problems using the Bayesian MCMC mixed-effects genetic model, BayesR3. We validate the method using simulated data, followed by analysis of empirical dairy cattle data using high dimension milk mid infra-red spectra data as an example of "omics" data and show its use to increase the precision of mapping variants affecting milk, fat, and protein yields relative to a univariate analysis of milk, fat, and protein.

摘要

贝叶斯方法,如 BayesR,用于根据个体的基因型(如单核苷酸多态性(SNP))预测其遗传值或风险,通常使用马尔可夫链蒙特卡罗(MCMC)过程来实现。然而,生成马尔可夫链的计算速度很慢。我们引入了一种从马尔可夫链中估计 SNP 效应的分块 Gibbs 抽样形式,通过从条件块后验中迭代地对每个 SNP 效应进行 n 次抽样,大大减少了计算时间。对所有块进行 m 次迭代,会产生长度为 m×n 的链。我们使用这种策略来解决大规模基因组预测和精细映射问题,使用贝叶斯 MCMC 混合效应遗传模型 BayesR3。我们使用模拟数据验证该方法,然后使用高维牛奶中红外光谱数据分析实际奶牛数据,以此为例展示“组学”数据,并展示其在提高影响牛奶、脂肪和蛋白质产量的变异体映射精度方面的用途,相对于牛奶、脂肪和蛋白质的单变量分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46fd/9256732/c4948376f550/42003_2022_3624_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验