Suppr超能文献

澳大利亚小扁豆育种计划中目标性状的基因组选择

Genomic selection for target traits in the Australian lentil breeding program.

作者信息

Gebremedhin Alem, Li Yongjun, Shunmugam Arun S K, Sudheesh Shimna, Valipour-Kahrood Hossein, Hayden Matthew J, Rosewarne Garry M, Kaur Sukhjiwan

机构信息

Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.

Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia.

出版信息

Front Plant Sci. 2024 Jan 3;14:1284781. doi: 10.3389/fpls.2023.1284781. eCollection 2023.

Abstract

Genomic selection (GS) uses associations between markers and phenotypes to predict the breeding values of individuals. It can be applied early in the breeding cycle to reduce the cross-to-cross generation interval and thereby increase genetic gain per unit of time. The development of cost-effective, high-throughput genotyping platforms has revolutionized plant breeding programs by enabling the implementation of GS at the scale required to achieve impact. As a result, GS is becoming routine in plant breeding, even in minor crops such as pulses. Here we examined 2,081 breeding lines from Agriculture Victoria's national lentil breeding program for a range of target traits including grain yield, ascochyta blight resistance, botrytis grey mould resistance, salinity and boron stress tolerance, 100-grain weight, seed size index and protein content. A broad range of narrow-sense heritabilities was observed across these traits (0.24-0.66). Genomic prediction models were developed based on 64,781 genome-wide SNPs using Bayesian methodology and genomic estimated breeding values (GEBVs) were calculated. Forward cross-validation was applied to examine the prediction accuracy of GS for these targeted traits. The accuracy of GEBVs was consistently higher (0.34-0.83) than BLUP estimated breeding values (EBVs) (0.22-0.54), indicating a higher expected rate of genetic gain with GS. GS-led parental selection using early generation breeding materials also resulted in higher genetic gain compared to BLUP-based selection performed using later generation breeding lines. Our results show that implementing GS in lentil breeding will fast track the development of high-yielding cultivars with increased resistance to biotic and abiotic stresses, as well as improved seed quality traits.

摘要

基因组选择(GS)利用标记与表型之间的关联来预测个体的育种值。它可以在育种周期的早期应用,以缩短世代间隔,从而提高单位时间内的遗传增益。具有成本效益的高通量基因分型平台的发展,通过使GS能够在实现影响所需的规模上实施,彻底改变了植物育种计划。因此,GS在植物育种中已成为常规方法,甚至在诸如豆类等小作物中也是如此。在此,我们研究了维多利亚州农业部国家小扁豆育种计划中的2081个育种系,考察了一系列目标性状,包括籽粒产量、对炭疽病的抗性、对灰霉病的抗性、耐盐性和耐硼胁迫能力、百粒重、种子大小指数和蛋白质含量。在这些性状中观察到了广泛的狭义遗传力范围(0.24 - 0.66)。基于64781个全基因组单核苷酸多态性(SNP),采用贝叶斯方法开发了基因组预测模型,并计算了基因组估计育种值(GEBV)。应用向前交叉验证来检验GS对这些目标性状的预测准确性。GEBV的准确性始终高于最佳线性无偏预测(BLUP)估计育种值(EBV)(0.22 - 0.54),表明GS具有更高的预期遗传增益率。与使用后期育种系进行的基于BLUP的选择相比,使用早期育种材料进行的GS主导的亲本选择也产生了更高的遗传增益。我们的结果表明,在小扁豆育种中实施GS将加速高产且对生物和非生物胁迫抗性增强以及种子质量性状改善的品种的培育。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24c4/10791954/389029cc76d4/fpls-14-1284781-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验