Suppr超能文献

结构快照揭示了光合作用 GAPDH 的 S-亚硝化反应中与硝普酸钠结合和反应的基础。

Structural snapshots of nitrosoglutathione binding and reactivity underlying S-nitrosylation of photosynthetic GAPDH.

机构信息

Department of Chemistry "G. Ciamician", University of Bologna, I-40126, Bologna, Italy.

Department of Pharmacy and Biotechnologies, University of Bologna, I-40126, Bologna, Italy.

出版信息

Redox Biol. 2022 Aug;54:102387. doi: 10.1016/j.redox.2022.102387. Epub 2022 Jun 30.

Abstract

S-nitrosylation is a redox post-translational modification widely recognized to play an important role in cellular signaling as it can modulate protein function and conformation. At the physiological level, nitrosoglutathione (GSNO) is considered the major physiological NO-releasing compound due to its ability to transfer the NO moiety to protein thiols but the structural determinants regulating its redox specificity are not fully elucidated. In this study, we employed photosynthetic glyceraldehyde-3-phosphate dehydrogenase from Chlamydomonas reinhardtii (CrGAPA) to investigate the molecular mechanisms underlying GSNO-dependent thiol oxidation. We first observed that GSNO causes reversible enzyme inhibition by inducing S-nitrosylation. While the cofactor NADP partially protects the enzyme from GSNO-mediated S-nitrosylation, protein inhibition is not observed in the presence of the substrate 1,3-bisphosphoglycerate, indicating that the S-nitrosylation of the catalytic Cys149 is responsible for CrGAPA inactivation. The crystal structures of CrGAPA in complex with NADP and NAD reveal a general structural similarity with other photosynthetic GAPDH. Starting from the 3D structure, we carried out molecular dynamics simulations to identify the protein residues involved in GSNO binding. The reaction mechanism of GSNO with CrGAPA Cys149 was investigated by quantum mechanical/molecular mechanical calculations, which permitted to disclose the relative contribution of protein residues in modulating the activation barrier of the trans-nitrosylation reaction. Based on our findings, we provide functional and structural insights into the response of CrGAPA to GSNO-dependent regulation, possibly expanding the mechanistic features to other protein cysteines susceptible to be oxidatively modified by GSNO.

摘要

S-亚硝基化是一种氧化还原翻译后修饰,被广泛认为在细胞信号转导中发挥重要作用,因为它可以调节蛋白质的功能和构象。在生理水平上,由于其能够将 NO 部分转移到蛋白质巯基上,因此认为硝普酸钠(GSNO)是主要的生理 NO 释放化合物,但调节其氧化还原特异性的结构决定因素尚未完全阐明。在这项研究中,我们使用来自衣藻(Chlamydomonas reinhardtii)的光合作用甘油醛-3-磷酸脱氢酶(CrGAPA)来研究 GSNO 依赖的巯基氧化的分子机制。我们首先观察到 GSNO 通过诱导 S-亚硝基化导致酶的可逆抑制。虽然辅因子 NADP 部分保护酶免受 GSNO 介导的 S-亚硝基化,但在底物 1,3-二磷酸甘油酸存在的情况下未观察到蛋白抑制,表明催化半胱氨酸 149 的 S-亚硝基化负责 CrGAPA 失活。CrGAPA 与 NADP 和 NAD 复合物的晶体结构与其他光合作用 GAPDH 具有总体结构相似性。从 3D 结构开始,我们进行了分子动力学模拟以确定与 GSNO 结合的蛋白质残基。通过量子力学/分子力学计算研究了 GSNO 与 CrGAPA Cys149 的反应机制,这使我们能够揭示调节反硝化反应的激活能垒的蛋白质残基的相对贡献。基于我们的发现,我们为 CrGAPA 对 GSNO 依赖性调节的反应提供了功能和结构见解,可能将机制特征扩展到其他易被 GSNO 氧化修饰的蛋白质半胱氨酸。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9002/9287727/45043c41bbc0/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验