Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany.
Cluster of Excellence Physics of Life, Technische Universität Dresden, 01602, Dresden, Germany.
Nat Commun. 2022 Jul 6;13(1):3885. doi: 10.1038/s41467-022-31471-5.
Coupled compartmentalised information processing and communication via molecular diffusion underpin network based population dynamics as observed in biological systems. Understanding how both compartmentalisation and communication can regulate information processes is key to rational design and control of compartmentalised reaction networks. Here, we integrate PEN DNA reactions into semi-permeable proteinosomes and characterise the effect of compartmentalisation on autocatalytic PEN DNA reactions. We observe unique behaviours in the compartmentalised systems which are not accessible under bulk conditions; for example, rates of reaction increase by an order of magnitude and reaction kinetics are more readily tuneable by enzyme concentrations in proteinosomes compared to buffer solution. We exploit these properties to regulate the reaction kinetics in two node compartmentalised reaction networks comprised of linear and autocatalytic reactions which we establish by bottom-up synthetic biology approaches.
通过分子扩散进行的耦合隔室信息处理和通信是基于网络的群体动力学的基础,这种现象在生物系统中观察到。了解隔室化和通信如何调节信息过程是合理设计和控制隔室化反应网络的关键。在这里,我们将 PEN DNA 反应整合到半透性蛋白体中,并研究了隔室化对自催化 PEN DNA 反应的影响。我们观察到在分隔系统中存在独特的行为,这些行为在本体条件下是无法观察到的;例如,反应速率提高了一个数量级,并且与缓冲溶液相比,在蛋白体中通过酶浓度更容易调节反应动力学。我们利用这些特性来调节由线性和自催化反应组成的两个节点分隔的反应网络的反应动力学,我们通过自下而上的合成生物学方法来建立这些网络。