Suppr超能文献

通过混合半参数通量平衡分析对中国仓鼠卵巢细胞进行基因组规模建模。

Genome-scale modeling of Chinese hamster ovary cells by hybrid semi-parametric flux balance analysis.

机构信息

LAQV REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Campus Caparica, 2829-516, Caparica, Portugal.

GSK, 89 rue de l'Institut, 1330, Rixensart, Belgium.

出版信息

Bioprocess Biosyst Eng. 2022 Nov;45(11):1889-1904. doi: 10.1007/s00449-022-02795-9. Epub 2022 Oct 16.

Abstract

Flux balance analysis (FBA) is currently the standard method to compute metabolic fluxes in genome-scale networks. Several FBA extensions employing diverse objective functions and/or constraints have been published. Here we propose a hybrid semi-parametric FBA extension that combines mechanistic-level constraints (parametric) with empirical constraints (non-parametric) in the same linear program. A CHO dataset with 27 measured exchange fluxes obtained from 21 reactor experiments served to evaluate the method. The mechanistic constraints were deduced from a reduced CHO-K1 genome-scale network with 686 metabolites, 788 reactions and 210 degrees of freedom. The non-parametric constraints were obtained by principal component analysis of the flux dataset. The two types of constraints were integrated in the same linear program showing comparable computational cost to standard FBA. The hybrid FBA is shown to significantly improve the specific growth rate prediction under different constraints scenarios. A metabolically efficient cell growth feed targeting minimal byproducts accumulation was designed by hybrid FBA. It is concluded that integrating parametric and nonparametric constraints in the same linear program may be an efficient approach to reduce the solution space and to improve the predictive power of FBA methods when critical mechanistic information is missing.

摘要

通量平衡分析(FBA)是目前计算基因组规模网络代谢通量的标准方法。已经发表了几种采用不同目标函数和/或约束的 FBA 扩展。在这里,我们提出了一种混合半参数 FBA 扩展,它在同一个线性规划中结合了基于机理的约束(参数)和基于经验的约束(非参数)。一个包含 27 个测量交换通量的 CHO 数据集,来自 21 个反应器实验,用于评估该方法。基于机理的约束是从具有 686 种代谢物、788 种反应和 210 个自由度的简化 CHO-K1 基因组规模网络中推导出的。非参数约束是通过对通量数据集进行主成分分析获得的。这两种类型的约束被整合到同一个线性规划中,其计算成本与标准 FBA 相当。结果表明,在不同的约束情况下,混合 FBA 可以显著提高比生长速率的预测。通过混合 FBA 设计了一种以最小副产物积累为目标的高效细胞生长进料。结论是,在关键的机理信息缺失的情况下,在同一个线性规划中集成参数和非参数约束可能是一种有效的方法,可以减少解决方案空间并提高 FBA 方法的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbbe/9616788/d15094d18ad8/449_2022_2795_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验