Suppr超能文献

使用微加工弹性体实现细胞片层的层级组装,构建锥形心脏心室。

Toward Hierarchical Assembly of Aligned Cell Sheets into a Conical Cardiac Ventricle Using Microfabricated Elastomers.

机构信息

Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada.

Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.

出版信息

Adv Biol (Weinh). 2022 Nov;6(11):e2101165. doi: 10.1002/adbi.202101165. Epub 2022 Jul 7.

Abstract

Despite current efforts in organ-on-chip engineering to construct miniature cardiac models, they often lack some physiological aspects of the heart, including fiber orientation. This motivates the development of bioartificial left ventricle models that mimic the myofiber orientation of the native ventricle. Herein, an approach relying on microfabricated elastomers that enables hierarchical assembly of 2D aligned cell sheets into a functional conical cardiac ventricle is described. Soft lithography and injection molding techniques are used to fabricate micro-grooves on an elastomeric polymer scaffold with three different orientations ranging from -60° to +60°, each on a separate trapezoidal construct. The width of the micro-grooves is optimized to direct the majority of cells along the groove direction and while periodic breaks are used to promote cell-cell contact. The scaffold is wrapped around a central mandrel to obtain a conical-shaped left ventricle model inspired by the size of a human left ventricle 19 weeks post-gestation. Rectangular micro-scale holes are incorporated to alleviate oxygen diffusional limitations within the 3D scaffold. Cardiomyocytes within the 3D left ventricle constructs showed high viability in all layers after 7 days of cultivation. The hierarchically assembled left ventricle also provided functional readouts such as calcium transients and ejection fraction.

摘要

尽管目前在器官芯片工程中努力构建微型心脏模型,但它们通常缺乏心脏的一些生理方面,包括纤维方向。这促使开发仿生左心室模型,以模拟天然心室的肌纤维方向。在此,描述了一种依赖于微加工弹性体的方法,该方法能够将 2D 定向细胞片组装成功能性锥形心脏心室。软光刻和注塑技术用于在具有三个不同取向(从-60°到+60°)的弹性聚合物支架上制造微槽,每个取向都在单独的梯形结构上。微槽的宽度经过优化,以引导大多数细胞沿槽方向排列,同时周期性的中断用于促进细胞间的接触。支架包裹在中心心轴周围,以获得灵感来自人类左心室妊娠 19 周后大小的锥形左心室模型。为了减轻 3D 支架内的氧气扩散限制, incorporat 了矩形微尺度孔。在培养 7 天后,3D 左心室构建体中的心肌细胞在所有层中均表现出高活力。分层组装的左心室还提供了钙瞬变和射血分数等功能读数。

相似文献

5
Tri-layered elastomeric scaffolds for engineering heart valve leaflets.用于制造心脏瓣膜小叶的三层弹性体支架。
Biomaterials. 2014 Sep;35(27):7774-85. doi: 10.1016/j.biomaterials.2014.04.039. Epub 2014 Jun 16.
8
Engineering Models of the Heart Left Ventricle.心脏左心室的工程模型。
ACS Biomater Sci Eng. 2022 Jun 13;8(6):2144-2160. doi: 10.1021/acsbiomaterials.1c00636. Epub 2022 May 6.

引用本文的文献

3
Cardiac organ chip: advances in construction and application.心脏器官芯片:构建与应用进展
Biomater Transl. 2024 Nov 15;5(4):411-424. doi: 10.12336/biomatertransl.2024.04.006. eCollection 2024.
8
Advances in cardiac tissue engineering and heart-on-a-chip.心脏组织工程学和芯片上心脏的研究进展。
J Biomed Mater Res A. 2024 Apr;112(4):492-511. doi: 10.1002/jbm.a.37633. Epub 2023 Nov 1.
10
Elastomeric Polyesters in Cardiovascular Tissue Engineering and Organs-on-a-Chip.弹性聚酯在心血管组织工程和芯片上器官中的应用
Biomacromolecules. 2023 Nov 13;24(11):4511-4531. doi: 10.1021/acs.biomac.3c00387. Epub 2023 Aug 28.

本文引用的文献

4
Recent advances in cellular therapy for malignant lymphoma.恶性淋巴瘤细胞治疗的最新进展。
Cytotherapy. 2021 Aug;23(8):662-671. doi: 10.1016/j.jcyt.2020.12.007. Epub 2021 Feb 6.
9
3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts.个性化厚且可灌注心脏补片和心脏的3D打印
Adv Sci (Weinh). 2019 Apr 15;6(11):1900344. doi: 10.1002/advs.201900344. eCollection 2019 Jun 5.
10
A tissue-engineered scale model of the heart ventricle.心脏心室的组织工程学比例模型。
Nat Biomed Eng. 2018 Dec;2(12):930-941. doi: 10.1038/s41551-018-0271-5. Epub 2018 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验