Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.
Innovation Center for Advanced Interdisciplinary Medicine, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510530, China.
Nat Commun. 2022 Jul 7;13(1):3907. doi: 10.1038/s41467-022-31611-x.
Existing knowledge of the role of epigenetic modifiers in pancreas development has exponentially increased. However, the function of TET dioxygenases in pancreatic endocrine specification remains obscure. We set out to tackle this issue using a human embryonic stem cell (hESC) differentiation system, in which TET1/TET2/TET3 triple knockout cells display severe defects in pancreatic β-cell specification. The integrative whole-genome analysis identifies unique cell-type-specific hypermethylated regions (hyper-DMRs) displaying reduced chromatin activity and remarkable enrichment of FOXA2, a pioneer transcription factor essential for pancreatic endoderm specification. Intriguingly, TET depletion leads to significant changes in FOXA2 binding at the pancreatic progenitor stage, in which gene loci with decreased FOXA2 binding feature low levels of active chromatin modifications and enriches for bHLH motifs. Transduction of full-length TET1 but not the TET1-catalytic-domain in TET-deficient cells effectively rescues β-cell differentiation accompanied by restoring PAX4 hypomethylation. Taking these findings together with the defective generation of functional β-cells upon TET1-inactivation, our study unveils an essential role of TET1-dependent demethylation in establishing β-cell identity. Moreover, we discover a physical interaction between TET1 and FOXA2 in endodermal lineage intermediates, which provides a mechanistic clue regarding the complex crosstalk between TET dioxygenases and pioneer transcription factors in epigenetic regulation during pancreas specification.
现有关于表观遗传修饰物在胰腺发育中作用的知识呈指数级增长。然而,TET 双加氧酶在胰腺内分泌细胞特化中的功能仍然不清楚。我们着手使用人胚胎干细胞(hESC)分化系统来解决这个问题,在该系统中,TET1/TET2/TET3 三重敲除细胞在胰腺β细胞特化中表现出严重缺陷。综合全基因组分析确定了独特的细胞类型特异性高甲基化区域(hyper-DMRs),这些区域显示出染色质活性降低,FOXA2 显著富集,FOXA2 是胰腺内胚层特化所必需的先驱转录因子。有趣的是,TET 耗竭导致 FOXA2 在胰腺祖细胞阶段的结合发生显著变化,在 FOXA2 结合减少的基因座中,具有低水平活性染色质修饰的特征,并富集 bHLH 基序。在 TET 缺陷细胞中转导全长 TET1 而不是 TET1 催化结构域可有效挽救β细胞分化,同时恢复 PAX4 低甲基化。将这些发现与 TET1 失活后功能性β细胞的产生缺陷结合起来,我们的研究揭示了 TET1 依赖性去甲基化在建立β细胞身份中的重要作用。此外,我们在内胚层谱系中间产物中发现了 TET1 和 FOXA2 之间的物理相互作用,这为 TET 双加氧酶和先驱转录因子在胰腺特化过程中的表观遗传调控中的复杂串扰提供了机制线索。