Suppr超能文献

通过模型预测组合对 COVID-19 的流行病学预测进行不确定性量化。

Uncertainty quantification for epidemiological forecasts of COVID-19 through combinations of model predictions.

机构信息

13330Defence Science and Technology Laboratory, Porton Down, Salisbury, UK.

Statistical Sciences Research Institute, 152288University of Southampton, Salisbury, UK.

出版信息

Stat Methods Med Res. 2022 Sep;31(9):1778-1789. doi: 10.1177/09622802221109523. Epub 2022 Jul 7.

Abstract

Scientific advice to the UK government throughout the COVID-19 pandemic has been informed by ensembles of epidemiological models provided by members of the Scientific Pandemic Influenza group on Modelling. Among other applications, the model ensembles have been used to forecast daily incidence, deaths and hospitalizations. The models differ in approach (e.g. deterministic or agent-based) and in assumptions made about the disease and population. These differences capture genuine uncertainty in the understanding of disease dynamics and in the choice of simplifying assumptions underpinning the model. Although analyses of multi-model ensembles can be logistically challenging when time-frames are short, accounting for structural uncertainty can improve accuracy and reduce the risk of over-confidence in predictions. In this study, we compare the performance of various ensemble methods to combine short-term (14-day) COVID-19 forecasts within the context of the pandemic response. We address practical issues around the availability of model predictions and make some initial proposals to address the shortcomings of standard methods in this challenging situation.

摘要

在整个 COVID-19 大流行期间,英国政府获得了科学大流行流感建模专家组提供的流行病学模型集合的科学建议。除了其他应用外,模型集合还被用于预测每日发病率、死亡人数和住院人数。这些模型在方法(例如确定性或基于代理的)和对疾病和人群的假设方面存在差异。这些差异反映了对疾病动态理解和为模型提供支持的简化假设选择方面的真实不确定性。尽管在时间框架较短时,对多模型集合的分析在逻辑上具有挑战性,但考虑结构不确定性可以提高准确性并降低预测过度自信的风险。在这项研究中,我们比较了各种集合方法在大流行应对背景下结合短期(14 天)COVID-19 预测的性能。我们解决了模型预测可用性方面的实际问题,并针对这种具有挑战性的情况提出了一些解决标准方法缺点的初步建议。

相似文献

4
Optimizing Disease Outbreak Forecast Ensembles.优化疾病爆发预测集成。
Emerg Infect Dis. 2024 Sep;30(9):1967-1969. doi: 10.3201/eid3009.240026.
7
Comparing human and model-based forecasts of COVID-19 in Germany and Poland.比较德国和波兰基于人群和模型的 COVID-19 预测结果。
PLoS Comput Biol. 2022 Sep 19;18(9):e1010405. doi: 10.1371/journal.pcbi.1010405. eCollection 2022 Sep.
9
Forecasting efforts from prior epidemics and COVID-19 predictions.预测以往疫情和 COVID-19 的努力。
Eur J Epidemiol. 2020 Aug;35(8):727-729. doi: 10.1007/s10654-020-00661-0. Epub 2020 Jul 17.
10
Adaptively stacking ensembles for influenza forecasting.自适应堆叠集成进行流感预测。
Stat Med. 2021 Dec 30;40(30):6931-6952. doi: 10.1002/sim.9219. Epub 2021 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验