Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States.
Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, United States.
ACS Chem Biol. 2022 Aug 19;17(8):2332-2343. doi: 10.1021/acschembio.2c00420. Epub 2022 Jul 8.
New antibiotics are needed as bacterial infections continue to be a leading cause of death, but efforts to develop compounds with promising antibacterial activity are hindered by a poor understanding of─and limited strategies for elucidating─their modes of action. We recently discovered a novel lasso peptide, ubonodin, that is active against opportunistic human lung pathogens from the complex (Bcc). Ubonodin inhibits RNA polymerase, but only select strains were susceptible, indicating that having a conserved cellular target does not guarantee activity. Given the cytoplasmic target, we hypothesized that cellular uptake of ubonodin determines susceptibility. Although Bcc strains harbor numerous nutrient uptake systems, these organisms lack close homologues of the single known lasso peptide membrane receptor, FhuA. Thus, a straightforward homology-driven approach failed to uncover the identity of the ubonodin transporter(s). Here, we used phenotype-guided comparative genomics to identify genes uniquely associated with ubonodin-susceptible Bcc strains, leading to the identification of PupB as the ubonodin outer membrane (OM) receptor in . The loss of PupB renders resistant to ubonodin, whereas expressing PupB sensitizes a resistant strain. We also examine how a conserved iron-regulated transcriptional pathway controls PupB to further tune ubonodin susceptibility. PupB is only the second lasso peptide OM receptor to be uncovered and the first outside of enterobacteria. Finally, we elucidate the full transport pathway for ubonodin by identifying its inner membrane receptor YddA in . Our work provides a complete picture of the mode of action of ubonodin and establishes a general framework for deciphering the transport pathways of other natural products with cytoplasmic targets.
需要新的抗生素,因为细菌感染仍是主要死因,但由于对其作用模式的理解有限且缺乏有效的阐明策略,因此开发具有良好抗菌活性的化合物的努力受到了阻碍。我们最近发现了一种新型的套索肽,乌博丁,它对来自复杂(Bcc)的机会性人肺病原体具有活性。乌博丁抑制 RNA 聚合酶,但只有特定的菌株易感,这表明具有保守的细胞靶标并不能保证其活性。鉴于细胞质靶标,我们假设乌博丁的细胞摄取决定了其敏感性。尽管 Bcc 菌株拥有许多营养摄取系统,但这些生物体缺乏已知的单个套索肽膜受体 FhuA 的近同源物。因此,一种直接的基于同源性的方法未能揭示乌博丁转运体的身份。在这里,我们使用表型指导的比较基因组学来鉴定与乌博丁敏感的 Bcc 菌株唯一相关的基因,从而鉴定出 中的 PupB 是乌博丁的外膜(OM)受体。PupB 的缺失使 对乌博丁产生抗性,而表达 PupB 则使抗性菌株敏感。我们还研究了保守的铁调节转录途径如何控制 PupB 以进一步调节乌博丁的敏感性。PupB 是第二个被揭示的套索肽 OM 受体,也是第一个在肠杆菌科之外的受体。最后,我们通过鉴定其在 中的内膜受体 YddA 阐明了乌博丁的完整转运途径。我们的工作提供了乌博丁作用模式的完整图景,并为阐明具有细胞质靶标的其他天然产物的转运途径建立了一个通用框架。