Aizamddin Muhammad Faiz, Mahat Mohd Muzamir, Zainal Ariffin Zaidah, Nawawi Mohd Azizi, Jani Nur Aimi, Nor Amdan Nur Asyura, Sadasivuni Kishor Kumar
School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia.
School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia.
Polymers (Basel). 2022 Jun 28;14(13):2617. doi: 10.3390/polym14132617.
During the last few years, there has been an increase in public awareness of antimicrobial fabrics, as well as an increase in commercial opportunities for their use in pharmaceutical and medical settings. The present study reports on the optimized fabrication of protonated polyaniline (PANI)-integrated polyester (PES) fabric. -toluene sulfonic acid (TSA) was used to protonate the PANI fabric and thus grant it antibacterial performance. The results of a 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay showed high antioxidant activity of protonated PANI fabric at a scavenging efficiency of 84.83%. Moreover, the findings revealed remarkably sensitive antibacterial performance of PANI-integrated fabric against the following Gram-positive bacteria: methicillin-resistant (MRSA), and ; and also against the following Gram-negative bacteria: , , and . Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and energy dispersive X-ray fluorescence (EDXRF) were used to determine the changes in the structural and elemental compositions of PANI fabric upon treatment with bacterial strains. Electrochemical impedance spectroscopy (EIS) revealed that the electrical conductivity value of protonated PANI fabric decreased by one (1) order of magnitude against and , from 3.35 ± 7.81 × 10 S cm to 6.11 ± 7.81 × 10 S cm and 4.63 ± 7.81 × 10 S cm, respectively. Scanning electron microscopy (SEM) analysis showed the disruption of bacterial membranes and their structures when exposed to protonated PANI fabric; meanwhile, thermogravimetric analysis (TGA) demonstrated that the fabric retained its thermal stability characteristics. These findings open up potential for the use of antimicrobial fabrics in the pharmaceutical and medical sectors.
在过去几年中,公众对抗菌织物的认识有所提高,其在制药和医疗环境中的商业应用机会也有所增加。本研究报告了质子化聚苯胺(PANI)-聚酯(PES)复合织物的优化制备。使用对甲苯磺酸(TSA)对PANI织物进行质子化处理,从而赋予其抗菌性能。1,1-二苯基-2-苦基肼(DPPH)清除试验结果表明,质子化PANI织物具有较高的抗氧化活性,清除效率为84.83%。此外,研究结果显示,PANI复合织物对以下革兰氏阳性菌具有显著的抗菌性能:耐甲氧西林金黄色葡萄球菌(MRSA)、[此处原文缺失一种革兰氏阳性菌名称];对以下革兰氏阴性菌也有抗菌性能:[此处原文缺失三种革兰氏阴性菌名称]。采用衰减全反射傅里叶变换红外光谱(ATR-FTIR)和能量色散X射线荧光光谱(EDXRF)来测定PANI织物在经细菌菌株处理后结构和元素组成的变化。电化学阻抗谱(EIS)显示,质子化PANI织物的电导率值相对于[此处原文缺失一种细菌名称]和[此处原文缺失另一种细菌名称]下降了一个数量级,分别从3.35±7.81×10⁻³ S/cm降至6.11±7.81×10⁻⁴ S/cm和4.63±7.81×10⁻⁴ S/cm。扫描电子显微镜(SEM)分析表明,当暴露于质子化PANI织物时,细菌细胞膜及其结构会受到破坏;同时热重分析(TGA)表明该织物保留了其热稳定性特征。这些研究结果为抗菌织物在制药和医疗领域的应用开辟了潜力。