Department of Computer Science and Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144011, India.
Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
Comput Math Methods Med. 2022 Jul 1;2022:2858845. doi: 10.1155/2022/2858845. eCollection 2022.
Brain cancer is a rare and deadly disease with a slim chance of survival. One of the most important tasks for neurologists and radiologists is to detect brain tumors early. Recent claims have been made that computer-aided diagnosis-based systems can diagnose brain tumors by employing magnetic resonance imaging (MRI) as a supporting technology. We propose transfer learning approaches for a deep learning model to detect malignant tumors, such as glioblastoma, using MRI scans in this study. This paper presents a deep learning-based approach for brain tumor identification and classification using the state-of-the-art object detection framework YOLO (You Only Look Once). The YOLOv5 is a novel object detection deep learning technique that requires limited computational architecture than its competing models. The study used the Brats 2021 dataset from the RSNA-MICCAI brain tumor radio genomic classification. The dataset has images annotated from RSNA-MICCAI brain tumor radio genomic competition dataset using the make sense an AI online tool for labeling dataset. The preprocessed data is then divided into testing and training for the model. The YOLOv5 model provides a precision of 88 percent. Finally, our model is tested across the whole dataset, and it is concluded that it is able to detect brain tumors successfully.
脑癌是一种罕见且致命的疾病,生存机会渺茫。神经科医生和放射科医生的最重要任务之一是尽早发现脑肿瘤。最近有声称称,基于计算机辅助诊断的系统可以通过使用磁共振成像 (MRI) 作为辅助技术来诊断脑肿瘤。在这项研究中,我们提出了一种迁移学习方法,用于使用 MRI 扫描来检测深度学习模型中的恶性肿瘤,如胶质母细胞瘤。本文提出了一种基于深度学习的方法,使用最先进的目标检测框架 YOLO(你只需看一次)来识别和分类脑肿瘤。YOLOv5 是一种新颖的对象检测深度学习技术,它需要的计算架构比其竞争模型要少。该研究使用了来自 RSNA-MICCAI 脑肿瘤放射基因组分类的 Brats 2021 数据集。该数据集使用 make sense an AI 在线工具对 RSNA-MICCAI 脑肿瘤放射基因组竞赛数据集进行标注。然后,预处理后的数据被分为测试和训练模型。YOLOv5 模型的精度达到 88%。最后,我们的模型在整个数据集上进行了测试,结果表明它能够成功检测脑肿瘤。