Suppr超能文献

光学相干断层扫描血管造影中的伪像及伪像去除

Artifacts and artifact removal in optical coherence tomographic angiography.

作者信息

Hormel Tristan T, Huang David, Jia Yali

机构信息

Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA.

Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.

出版信息

Quant Imaging Med Surg. 2021 Mar;11(3):1120-1133. doi: 10.21037/qims-20-730.

Abstract

Optical coherence tomographic angiography (OCTA) enables rapid imaging of retinal vasculature in three dimensions. While the technique has provided quantification of healthy vessels as well as pathology in several diseases, it is not unusual for OCTA data to contain artifacts that may influence measurement outcomes or defy image interpretation. In this review, we discuss the sources of several OCTA artifacts-including projection, motion, and signal reduction-as well as strategies for their removal. Artifact compensation can improve the accuracy of OCTA measurements, and the most effective use of the technology will incorporate hardware and software that can perform such correction.

摘要

光学相干断层扫描血管造影(OCTA)能够对视网膜血管系统进行快速三维成像。虽然该技术已实现对健康血管以及多种疾病中的病变进行定量分析,但OCTA数据中出现可能影响测量结果或妨碍图像解读的伪像并不罕见。在本综述中,我们讨论了几种OCTA伪像的来源,包括投影、运动和信号衰减,以及去除这些伪像的策略。伪像补偿可提高OCTA测量的准确性,而对该技术的最有效应用将包括能够进行此类校正的硬件和软件。

相似文献

1
Artifacts and artifact removal in optical coherence tomographic angiography.
Quant Imaging Med Surg. 2021 Mar;11(3):1120-1133. doi: 10.21037/qims-20-730.
3
Deep-learning-based motion correction in optical coherence tomography angiography.
J Biophotonics. 2021 Dec;14(12):e202100097. doi: 10.1002/jbio.202100097. Epub 2021 Aug 3.
4
The OSCAR-MP Consensus Criteria for Quality Assessment of Retinal Optical Coherence Tomography Angiography.
Neurol Neuroimmunol Neuroinflamm. 2023 Oct 9;10(6). doi: 10.1212/NXI.0000000000200169. Print 2023 Nov.
6
Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology.
Biomed Opt Express. 2016 Sep 6;7(10):3905-3915. doi: 10.1364/BOE.7.003905. eCollection 2016 Oct 1.
7
Plexus-specific retinal vascular anatomy and pathologies as seen by projection-resolved optical coherence tomographic angiography.
Prog Retin Eye Res. 2021 Jan;80:100878. doi: 10.1016/j.preteyeres.2020.100878. Epub 2020 Jul 24.
8
Optical coherence tomography angiography artifacts in retinal pigment epithelial detachment.
Can J Ophthalmol. 2017 Aug;52(4):419-424. doi: 10.1016/j.jcjo.2016.12.012. Epub 2017 Mar 15.

引用本文的文献

1
Quantifying Choriocapillaris Flow Deficits in Diabetic Retinopathy Using Projection-Resolved OCT Angiography.
Invest Ophthalmol Vis Sci. 2025 Sep 2;66(12):13. doi: 10.1167/iovs.66.12.13.
3
Widefield OCT angiography.
Prog Retin Eye Res. 2025 Jul;107:101378. doi: 10.1016/j.preteyeres.2025.101378. Epub 2025 Jun 13.
5
Optical coherence tomography retinal imaging: narrative review of technological advancements and clinical applications.
Ann Transl Med. 2025 Apr 30;13(2):17. doi: 10.21037/atm-24-211. Epub 2025 Apr 29.
7
Dual-stream disentangled model for microvascular extraction in five datasets from multiple OCTA instruments.
Front Med (Lausanne). 2025 Jan 29;12:1542737. doi: 10.3389/fmed.2025.1542737. eCollection 2025.
8
VDMNet: A Deep Learning Framework with Vessel Dynamic Convolution and Multi-Scale Fusion for Retinal Vessel Segmentation.
Bioengineering (Basel). 2024 Nov 25;11(12):1190. doi: 10.3390/bioengineering11121190.

本文引用的文献

1
High-resolution wide-field OCT angiography with a self-navigation method to correct microsaccades and blinks.
Biomed Opt Express. 2020 May 21;11(6):3234-3245. doi: 10.1364/BOE.390430. eCollection 2020 Jun 1.
2
Comparative study of deep learning models for optical coherence tomography angiography.
Biomed Opt Express. 2020 Feb 26;11(3):1580-1597. doi: 10.1364/BOE.387807. eCollection 2020 Mar 1.
3
Automated diagnosis and segmentation of choroidal neovascularization in OCT angiography using deep learning.
Biomed Opt Express. 2020 Jan 14;11(2):927-944. doi: 10.1364/BOE.379977. eCollection 2020 Feb 1.
4
75-degree non-mydriatic single-volume optical coherence tomographic angiography.
Biomed Opt Express. 2019 Nov 15;10(12):6286-6295. doi: 10.1364/BOE.10.006286. eCollection 2019 Dec 1.
5
Prevalence and Severity of Artifacts in Optical Coherence Tomographic Angiograms.
JAMA Ophthalmol. 2020 Feb 1;138(2):119-126. doi: 10.1001/jamaophthalmol.2019.4971.
6
8
Development and validation of a deep learning algorithm for distinguishing the nonperfusion area from signal reduction artifacts on OCT angiography.
Biomed Opt Express. 2019 Jun 12;10(7):3257-3268. doi: 10.1364/BOE.10.003257. eCollection 2019 Jul 1.
9
Signal Strength Reduction Effects in OCT Angiography.
Ophthalmol Retina. 2019 Oct;3(10):835-842. doi: 10.1016/j.oret.2019.04.029. Epub 2019 May 8.
10
Projection-Resolved Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma.
Am J Ophthalmol. 2019 Nov;207:99-109. doi: 10.1016/j.ajo.2019.05.024. Epub 2019 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验