Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.
J Am Chem Soc. 2022 Jul 27;144(29):13344-13355. doi: 10.1021/jacs.2c04937. Epub 2022 Jul 13.
New-to-nature radical biocatalysis has recently emerged as a powerful strategy to tame fleeting open-shell intermediates for stereoselective transformations. In 2021, we introduced a novel metalloredox biocatalysis strategy that leverages the innate redox properties of the heme cofactor of P450 enzymes, furnishing new-to-nature atom-transfer radical cyclases (ATRCases) with excellent activity and stereoselectivity. Herein, we report a combined computational and experimental study to shed light on the mechanism and origins of enantioselectivity for this system. Molecular dynamics and quantum mechanics/molecular mechanics (QM/MM) calculations revealed an unexpected role of the key beneficial mutation I263Q. The glutamine residue serves as an essential hydrogen bond donor that engages with the carbonyl moiety of the substrate to promote bromine atom abstraction and enhance the enantioselectivity of radical cyclization. Therefore, the evolved ATRCase is a bifunctional biocatalyst, wherein the heme cofactor enables atom-transfer radical biocatalysis, while the hydrogen bond donor residue further enhances the activity and enantioselectivity. Unlike many enzymatic stereocontrol rationales based on a rigid substrate binding model, our computations demonstrate a high degree of rotational flexibility of the allyl moiety in an enzyme-substrate complex and succeeding intermediates. Therefore, the enantioselectivity is controlled by the radical cyclization transition states rather than the substrate orientation in ground-state complexes in the preceding steps. During radical cyclization, anchoring effects of the Q263 residue and steric interactions with the heme cofactor concurrently control the π-facial selectivity, allowing for highly enantioselective C-C bond formation. Our computational findings are corroborated by experiments with ATRCase mutants generated from site-directed mutagenesis.
新型自然态自由基生物催化作为一种强大的策略,近年来已崭露头角,可用于对转瞬即逝的开壳中间体进行立体选择性转化。2021 年,我们引入了一种新型的氧化还原酶生物催化策略,利用 P450 酶血红素辅因子的固有氧化还原性质,为新型自然态原子转移自由基环化酶(ATRCases)提供了优异的活性和立体选择性。在此,我们报告了一项组合计算和实验研究,旨在阐明该体系的反应机制和对映选择性起源。分子动力学和量子力学/分子力学(QM/MM)计算揭示了关键有益突变 I263Q 的意想不到的作用。谷氨酰胺残基作为必需的氢键供体,与底物的羰基部分结合,促进溴原子的提取,并增强自由基环化的对映选择性。因此,进化后的 ATRCase 是一种双功能生物催化剂,其中血红素辅因子能够进行原子转移自由基生物催化,而氢键供体残基进一步提高了活性和对映选择性。与许多基于刚性底物结合模型的酶立体控制原理不同,我们的计算表明在酶-底物复合物和后续中间体中,烯丙基部分具有高度的旋转灵活性。因此,对映选择性由自由基环化过渡态控制,而不是在前一步骤中的基态复合物中底物的取向控制。在自由基环化过程中,Q263 残基的锚固效应和与血红素辅因子的空间相互作用共同控制π-面选择性,允许高度对映选择性的 C-C 键形成。我们的计算结果得到了来自定点突变的 ATRCase 突变体实验的证实。