Zhao Liu-Peng, Mai Binh Khanh, Cheng Lida, Zhao Yunlong, Guo Rui, Liu Peng, Yang Yang
Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
Nat Synth. 2024 Aug;3(8):967-975. doi: 10.1038/s44160-024-00536-2. Epub 2024 Apr 26.
Due to the scarcity of C-F bond forming enzymatic activities in nature and the contrasting ubiquity of organofluorine moieties in bioactive compounds, developing new biocatalytic fluorination reactions represents a preeminent challenge in enzymology, biocatalysis, and synthetic biology. Additionally, catalytic asymmetric C(sp)-H fluorination remains a challenging problem facing synthetic chemists. Although many nonheme Fe halogenases have been discovered to promote C(sp)-H halogenation reactions, to date, efforts to convert these Fe halogenases to fluorinases have remained unsuccessful. We repurposed a plant-derived natural nonheme enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) to catalyze unnatural enantioselective C(sp)-H fluorination via a radical rebound mechanism. Directed evolution afforded C-H fluorinating enzyme ACCO displaying 200-fold higher activity, substantially improved chemoselectivity and excellent enantioselectivity, converting a range of substrates into enantioenriched organofluorine products. Notably, almost all the beneficial mutations were found to be distal to the Fe centre, underscoring the importance of substrate tunnel engineering in nonheme Fe biocatalysis. Computational studies revealed that the radical rebound step with the Fe(III)-F intermediate has an exceedingly low activation barrier of 3.4 kcal/mol, highlighting a new avenue to expand the catalytic repertoire of enzymes to encompass asymmetric C-F bond formation.
由于自然界中形成C-F键的酶活性稀缺,而生物活性化合物中有机氟部分却普遍存在,开发新的生物催化氟化反应是酶学、生物催化和合成生物学领域的一项重大挑战。此外,催化不对称C(sp)-H氟化仍然是合成化学家面临的一个具有挑战性的问题。尽管已发现许多非血红素铁卤化酶可促进C(sp)-H卤化反应,但迄今为止,将这些铁卤化酶转化为氟化酶的努力仍未成功。我们将一种植物来源的天然非血红素酶1-氨基环丙烷-1-羧酸氧化酶(ACCO)进行重新利用,通过自由基反弹机制催化非天然对映选择性C(sp)-H氟化反应。定向进化得到了C-H氟化酶ACCO,其活性提高了200倍,化学选择性显著改善且对映选择性优异,可将一系列底物转化为对映体富集的有机氟产物。值得注意的是,几乎所有有益突变都位于远离铁中心的位置,这突出了非血红素铁生物催化中底物通道工程的重要性。计算研究表明,Fe(III)-F中间体的自由基反弹步骤具有极低的3.4 kcal/mol活化能垒,为扩展酶的催化范围以涵盖不对称C-F键形成开辟了一条新途径。