Suppr超能文献

通过生物信息学分析和验证确定脓毒症中潜在有效的诊断和预后生物标志物。

Identifying Potential Effective Diagnostic and Prognostic Biomarkers in Sepsis by Bioinformatics Analysis and Validation.

作者信息

Huang Xu, Tan Jixiang, Chen Xiaoying, Zhao Lin

机构信息

Department of Intensive Care Unit, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.

出版信息

Int J Gen Med. 2022 Jul 6;15:6055-6071. doi: 10.2147/IJGM.S368782. eCollection 2022.

Abstract

PURPOSE

Sepsis is a serious life-threatening condition characterised by multi-organ failure due to a disturbed immune response caused by severe infection. The pathogenesis of sepsis is unclear. The aim of this article is to identify potential diagnostic and prognostic biomarkers of sepsis to improve the survival of patients with sepsis.

METHODS

We downloaded 7 datasets from Gene Expression Omnibus database and screened the immune-related differential genes (IRDEGs). The related functions of IRDEGs were analyzed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). CIBERSORT was used to evaluate the infiltration of the immune cells, and Pearson algorithm of R software was used to calculate the correlation between the immune cell content and gene expression to screen the genes most related to immune cells in sepsis group, which were intersected with IRDEGs to obtain common genes. Key genes were identified from common genes based on the area under the receiver operating characteristic curve (AUC) greater than 0.8 in the 6 datasets. We then analyzed the predictive value of key genes in sepsis survival. Finally, we verified the expression of key genes in patients with sepsis by PCR analysis.

RESULTS

A total of 164 IRDEGs were obtained, which were associated mainly with inflammatory and immunometabolic responses. Ten key genes (IL1R2, LTB4R, S100A11, S100A12, SORT1, RASGRP1, CD3G, CD40LG, CD8A and PPP3CC) were identified with high diagnostic efficacy. Logistic regression analysis revealed that six of the key genes (LTB4R, S100A11, SORT1, RASGRP1, CD3G and CD8A) may affect the survival prognosis of sepsis. PCR analysis confirmed that the expression of seven key genes (IL1R2, S100A12, RASGRP1, CD3G, CD40LG, CD8A and PPP3CC) was consistent with microarray outcome.

CONCLUSION

This study explored the immune and metabolic response mechanisms associated with sepsis, and identified ten potential diagnostic and six prognostic genes.

摘要

目的

脓毒症是一种严重的危及生命的病症,其特征是由于严重感染引起的免疫反应紊乱导致多器官功能衰竭。脓毒症的发病机制尚不清楚。本文旨在确定脓毒症潜在的诊断和预后生物标志物,以提高脓毒症患者的生存率。

方法

我们从基因表达综合数据库下载了7个数据集,并筛选了免疫相关差异基因(IRDEGs)。通过基因本体论(GO)和京都基因与基因组百科全书(KEGG)分析IRDEGs的相关功能。使用CIBERSORT评估免疫细胞的浸润情况,并使用R软件的Pearson算法计算免疫细胞含量与基因表达之间的相关性,以筛选脓毒症组中与免疫细胞最相关的基因,这些基因与IRDEGs进行交集运算以获得共同基因。基于6个数据集中受试者工作特征曲线(AUC)下面积大于0.8,从共同基因中鉴定出关键基因。然后我们分析了关键基因在脓毒症生存中的预测价值。最后,我们通过PCR分析验证了脓毒症患者关键基因的表达。

结果

共获得164个IRDEGs,主要与炎症和免疫代谢反应相关。鉴定出10个具有高诊断效能的关键基因(IL1R2、LTB4R、S100A11、S100A12、SORT1、RASGRP1、CD3G、CD40LG、CD8A和PPP3CC)。逻辑回归分析显示,其中6个关键基因(LTB4R、S100A11、SORT1、RASGRP1、CD3G和CD8A)可能影响脓毒症的生存预后。PCR分析证实,7个关键基因(IL1R2、S100A12、RASGRP1、CD3G、CD40LG、CD8A和PPP3CC)的表达与微阵列结果一致。

结论

本研究探索了与脓毒症相关的免疫和代谢反应机制,并鉴定出10个潜在的诊断基因和6个预后基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed81/9271908/cc3853c3180c/IJGM-15-6055-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验