Suppr超能文献

评估随机森林和基于迭代随机森林的方法应用于基因表达数据时的性能。

Evaluating the performance of random forest and iterative random forest based methods when applied to gene expression data.

作者信息

Walker Angelica M, Cliff Ashley, Romero Jonathon, Shah Manesh B, Jones Piet, Felipe Machado Gazolla Joao Gabriel, Jacobson Daniel A, Kainer David

机构信息

The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, 821 Volunteer Blvd, Knoxville 37996, TN, USA.

Computational and Predictive Biology, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge 37830, TN, USA.

出版信息

Comput Struct Biotechnol J. 2022 Jun 22;20:3372-3386. doi: 10.1016/j.csbj.2022.06.037. eCollection 2022.

Abstract

Gene-to-gene networks, such as Gene Regulatory Networks (GRN) and Predictive Expression Networks (PEN) capture relationships between genes and are beneficial for use in downstream biological analyses. There exists multiple network inference tools to produce these gene-to-gene networks from matrices of gene expression data. Random Forest-Leave One Out Prediction (RF-LOOP) is a method that has been shown to be efficient at producing these gene-to-gene networks, frequently known as GEne Network Inference with Ensemble of trees (GENIE3). Random Forest can be replaced in this process by iterative Random Forest (iRF), which performs variable selection and boosting. Here we validate that iterative Random Forest-Leave One Out Prediction (iRF-LOOP) produces higher quality networks than GENIE3 (RF-LOOP). We use both synthetic and empirical networks from the Dialogue for Reverse Engineering Assessment and Methods (DREAM) Challenges by Sage Bionetworks, as well as two additional empirical networks created from and expression data.

摘要

基因到基因网络,如基因调控网络(GRN)和预测性表达网络(PEN),捕捉基因之间的关系,有利于用于下游生物学分析。存在多种网络推理工具可从基因表达数据矩阵生成这些基因到基因网络。随机森林留一法预测(RF-LOOP)是一种已被证明在生成这些基因到基因网络方面效率很高的方法,通常称为基于树集成的基因网络推理(GENIE3)。在此过程中,随机森林可以被迭代随机森林(iRF)取代,iRF可进行变量选择和增强。在这里,我们验证了迭代随机森林留一法预测(iRF-LOOP)生成的网络质量高于GENIE3(RF-LOOP)。我们使用了来自Sage生物网络公司逆向工程评估与方法对话(DREAM)挑战的合成网络和实证网络,以及从[具体内容1]和[具体内容2]表达数据创建的另外两个实证网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4389/9260260/217bb62365b9/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验