Suppr超能文献

自然语言处理工具ChatGPT在临床实践中的应用:比较研究与增强型系统评价

Applications of the Natural Language Processing Tool ChatGPT in Clinical Practice: Comparative Study and Augmented Systematic Review.

作者信息

Schopow Nikolas, Osterhoff Georg, Baur David

机构信息

Department for Orthopedics, Trauma Surgery and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany.

出版信息

JMIR Med Inform. 2023 Nov 28;11:e48933. doi: 10.2196/48933.

Abstract

BACKGROUND

This research integrates a comparative analysis of the performance of human researchers and OpenAI's ChatGPT in systematic review tasks and describes an assessment of the application of natural language processing (NLP) models in clinical practice through a review of 5 studies.

OBJECTIVE

This study aimed to evaluate the reliability between ChatGPT and human researchers in extracting key information from clinical articles, and to investigate the practical use of NLP in clinical settings as evidenced by selected studies.

METHODS

The study design comprised a systematic review of clinical articles executed independently by human researchers and ChatGPT. The level of agreement between and within raters for parameter extraction was assessed using the Fleiss and Cohen κ statistics.

RESULTS

The comparative analysis revealed a high degree of concordance between ChatGPT and human researchers for most parameters, with less agreement for study design, clinical task, and clinical implementation. The review identified 5 significant studies that demonstrated the diverse applications of NLP in clinical settings. These studies' findings highlight the potential of NLP to improve clinical efficiency and patient outcomes in various contexts, from enhancing allergy detection and classification to improving quality metrics in psychotherapy treatments for veterans with posttraumatic stress disorder.

CONCLUSIONS

Our findings underscore the potential of NLP models, including ChatGPT, in performing systematic reviews and other clinical tasks. Despite certain limitations, NLP models present a promising avenue for enhancing health care efficiency and accuracy. Future studies must focus on broadening the range of clinical applications and exploring the ethical considerations of implementing NLP applications in health care settings.

摘要

背景

本研究对人类研究人员和OpenAI的ChatGPT在系统评价任务中的表现进行了比较分析,并通过对5项研究的综述,描述了自然语言处理(NLP)模型在临床实践中的应用评估。

目的

本研究旨在评估ChatGPT与人类研究人员在从临床文章中提取关键信息方面的可靠性,并通过所选研究证明NLP在临床环境中的实际应用。

方法

该研究设计包括由人类研究人员和ChatGPT独立执行的临床文章系统评价。使用Fleiss和Cohen κ统计量评估评分者之间和评分者内部在参数提取方面的一致程度。

结果

比较分析显示,ChatGPT与人类研究人员在大多数参数上具有高度一致性,但在研究设计、临床任务和临床实施方面的一致性较低。该综述确定了5项重要研究,这些研究展示了NLP在临床环境中的多种应用。这些研究结果突出了NLP在各种情况下提高临床效率和患者治疗效果的潜力,从加强过敏检测和分类到改善创伤后应激障碍退伍军人心理治疗的质量指标。

结论

我们的研究结果强调了包括ChatGPT在内的NLP模型在进行系统评价和其他临床任务方面的潜力。尽管存在某些局限性,但NLP模型为提高医疗保健效率和准确性提供了一条有前景的途径。未来的研究必须专注于扩大临床应用范围,并探索在医疗保健环境中实施NLP应用的伦理考量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f6b/10716749/5f421d7ef6db/medinform_v11i1e48933_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验