Suppr超能文献

利用多模型训练和 3D 卷积神经网络提高晚期 MRI 中肝脏肿瘤的自动分割。

Improving automatic liver tumor segmentation in late-phase MRI using multi-model training and 3D convolutional neural networks.

机构信息

Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.

Medical Image Computing Group, University of Bremen, Bremen, Germany.

出版信息

Sci Rep. 2022 Jul 18;12(1):12262. doi: 10.1038/s41598-022-16388-9.

Abstract

Automatic liver tumor segmentation can facilitate the planning of liver interventions. For diagnosis of hepatocellular carcinoma, dynamic contrast-enhanced MRI (DCE-MRI) can yield a higher sensitivity than contrast-enhanced CT. However, most studies on automatic liver lesion segmentation have focused on CT. In this study, we present a deep learning-based approach for liver tumor segmentation in the late hepatocellular phase of DCE-MRI, using an anisotropic 3D U-Net architecture and a multi-model training strategy. The 3D architecture improves the segmentation performance compared to a previous study using a 2D U-Net (mean Dice 0.70 vs. 0.65). A further significant improvement is achieved by a multi-model training approach (0.74), which is close to the inter-rater agreement (0.78). A qualitative expert rating of the automatically generated contours confirms the benefit of the multi-model training strategy, with 66 % of contours rated as good or very good, compared to only 43 % when performing a single training. The lesion detection performance with a mean F1-score of 0.59 is inferior to human raters (0.76). Overall, this study shows that correctly detected liver lesions in late-phase DCE-MRI data can be automatically segmented with high accuracy, but the detection, in particular of smaller lesions, can still be improved.

摘要

自动肝肿瘤分割可以辅助肝介入规划。对于肝细胞癌的诊断,动态对比增强磁共振成像(DCE-MRI)比增强 CT 的灵敏度更高。然而,大多数自动肝病变分割的研究都集中在 CT 上。在这项研究中,我们提出了一种基于深度学习的方法,用于 DCE-MRI 肝细胞晚期肝肿瘤分割,使用各向异性 3D U-Net 架构和多模型训练策略。3D 架构比以前使用 2D U-Net 的研究(平均 Dice 为 0.70 比 0.65)提高了分割性能。通过多模型训练方法(0.74)进一步显著提高,接近组内一致性(0.78)。对自动生成轮廓的定性专家评分证实了多模型训练策略的益处,有 66%的轮廓被评为良好或非常好,而单独训练时只有 43%。平均 F1 得分为 0.59 的病变检测性能不如人类评估者(0.76)。总体而言,这项研究表明,在晚期 DCE-MRI 数据中,可以使用高精度自动分割正确检测到的肝病变,但检测,特别是较小的病变,仍有待提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2849/9293996/82a95b6ef08f/41598_2022_16388_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验