Suppr超能文献

具有干扰的因果效应的有针对性极大似然估计:一项模拟研究。

Targeted maximum likelihood estimation of causal effects with interference: A simulation study.

机构信息

Department of Epidemiology, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, North Carolina, USA.

Carolina Population Center, UNC Chapel Hill, Chapel Hill, North Carolina, USA.

出版信息

Stat Med. 2022 Oct 15;41(23):4554-4577. doi: 10.1002/sim.9525. Epub 2022 Jul 18.

Abstract

Interference, the dependency of an individual's potential outcome on the exposure of other individuals, is a common occurrence in medicine and public health. Recently, targeted maximum likelihood estimation (TMLE) has been extended to settings of interference, including in the context of estimation of the mean of an outcome under a specified distribution of exposure, referred to as a policy. This paper summarizes how TMLE for independent data is extended to general interference (network-TMLE). An extensive simulation study is presented of network-TMLE, consisting of four data generating mechanisms (unit-treatment effect only, spillover effects only, unit-treatment and spillover effects, infection transmission) in networks of varying structures. Simulations show that network-TMLE performs well across scenarios with interference, but issues manifest when policies are not well-supported by the observed data, potentially leading to poor confidence interval coverage. Guidance for practical application, freely available software, and areas of future work are provided.

摘要

干扰,即个体的潜在结果依赖于其他个体的暴露,在医学和公共卫生领域很常见。最近,有针对性的最大似然估计(TMLE)已扩展到干扰的情况下,包括在指定暴露分布下的结果均值的估计中,这种情况下称为政策。本文总结了如何将独立数据的 TMLE 扩展到一般干扰(网络-TMLE)。我们进行了广泛的网络-TMLE 模拟研究,包括四种数据生成机制(仅单位治疗效果、仅溢出效应、单位治疗和溢出效应、感染传播)在不同结构的网络中。模拟结果表明,网络-TMLE 在存在干扰的情况下表现良好,但当政策与观察数据不匹配时,就会出现问题,这可能导致置信区间覆盖不良。我们提供了实践应用的指导、免费可用的软件以及未来工作的领域。

相似文献

1
Targeted maximum likelihood estimation of causal effects with interference: A simulation study.
Stat Med. 2022 Oct 15;41(23):4554-4577. doi: 10.1002/sim.9525. Epub 2022 Jul 18.
2
Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies.
Am J Epidemiol. 2017 Jan 1;185(1):65-73. doi: 10.1093/aje/kww165. Epub 2016 Dec 9.
4
Collaborative double robust targeted maximum likelihood estimation.
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
5
Handling missing data when estimating causal effects with targeted maximum likelihood estimation.
Am J Epidemiol. 2024 Jul 8;193(7):1019-1030. doi: 10.1093/aje/kwae012.
6
A new approach to hierarchical data analysis: Targeted maximum likelihood estimation for the causal effect of a cluster-level exposure.
Stat Methods Med Res. 2019 Jun;28(6):1761-1780. doi: 10.1177/0962280218774936. Epub 2018 Jun 19.
7
Targeted maximum likelihood estimation for causal inference in survival and competing risks analysis.
Lifetime Data Anal. 2024 Jan;30(1):4-33. doi: 10.1007/s10985-022-09576-2. Epub 2022 Nov 7.
9
A targeted maximum likelihood estimator of a causal effect on a bounded continuous outcome.
Int J Biostat. 2010;6(1):Article 26. doi: 10.2202/1557-4679.1260. Epub 2010 Aug 1.

引用本文的文献

1
Development of a Risk-Scoring System for Prediction of Blood Transfusion During Hospitalization for Delivery.
O G Open. 2025 Apr;2(2). doi: 10.1097/og9.0000000000000078. Epub 2025 Apr 24.

本文引用的文献

1
Causal Inference for Social Network Data.
J Am Stat Assoc. 2024;119(545):597-611. doi: 10.1080/01621459.2022.2131557. Epub 2022 Dec 12.
2
Effectiveness of Localized Lockdowns in the COVID-19 Pandemic.
Am J Epidemiol. 2022 Mar 24;191(5):812-824. doi: 10.1093/aje/kwac008.
3
Auto-G-Computation of Causal Effects on a Network.
J Am Stat Assoc. 2021;116(534):833-844. doi: 10.1080/01621459.2020.1811098. Epub 2020 Oct 1.
4
Machine Learning for Causal Inference: On the Use of Cross-fit Estimators.
Epidemiology. 2021 May 1;32(3):393-401. doi: 10.1097/EDE.0000000000001332.
5
Array programming with NumPy.
Nature. 2020 Sep;585(7825):357-362. doi: 10.1038/s41586-020-2649-2. Epub 2020 Sep 16.
6
Interdependence and the cost of uncoordinated responses to COVID-19.
Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):19837-19843. doi: 10.1073/pnas.2009522117. Epub 2020 Jul 30.
8
Drug and Opioid-Involved Overdose Deaths - United States, 2017-2018.
MMWR Morb Mortal Wkly Rep. 2020 Mar 20;69(11):290-297. doi: 10.15585/mmwr.mm6911a4.
9
SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验