Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
PLoS One. 2022 Jul 22;17(7):e0271765. doi: 10.1371/journal.pone.0271765. eCollection 2022.
A large number of behavioral experiments have demonstrated the existence of a magnetic sense in many animal species. Further, studies with immediate gene expression markers have identified putative brain regions involved in magnetic information processing. In contrast, very little is known about the physiology of the magnetic sense and how the magnetic field is neuronally encoded. In vivo electrophysiological studies reporting neuronal correlates of the magnetic sense either have turned out to be irreproducible for lack of appropriate artifact controls or still await independent replication. Thus far, the research field of magnetoreception has little exploited the power of ex vivo physiological studies, which hold great promise for enabling stringent controls. However, tight space constraints in a recording setup and the presence of magnetizable materials in setup components and microscope objectives make it demanding to generate well-defined magnetic stimuli at the location of the biological specimen. Here, we present a solution based on a miniature vector magnetometer, a coil driver, and a calibration routine for the coil system to compensate for magnetic distortions in the setup. The magnetometer fits in common physiology recording chambers and has a sufficiently small spatial integration area to allow for probing spatial inhomogeneities. The coil-driver allows for the generation of defined non-stationary fast changing magnetic stimuli. Our ex vivo multielectrode array recordings from avian retinal ganglion cells show that artifacts induced by rapid magnetic stimulus changes can mimic the waveform of biological spikes on single electrodes. However, induction artifacts can be separated clearly from biological responses if the spatio-temporal characteristics of the artifact on multiple electrodes is taken into account. We provide the complete hardware design data and software resources for the integrated magnetic stimulation system.
大量行为实验表明,许多动物物种都存在磁感觉。此外,使用即时基因表达标记的研究已经确定了可能涉及磁信息处理的大脑区域。相比之下,人们对磁感觉的生理学以及磁场如何被神经元编码知之甚少。报告磁感觉神经元相关性的活体电生理研究由于缺乏适当的伪影对照而无法重现,或者仍在等待独立复制。到目前为止,磁受体研究领域很少利用离体生理学研究的力量,离体生理学研究为实现严格控制提供了很大的希望。然而,由于记录设置中的空间限制以及设置组件和显微镜物镜中存在可磁化材料,因此很难在生物标本的位置产生定义良好的磁场刺激。在这里,我们提出了一种基于微型矢量磁力计、线圈驱动器和线圈系统校准例程的解决方案,用于补偿设置中的磁场扭曲。磁力计适合常见的生理学记录室,并且具有足够小的空间积分面积,可用于探测空间不均匀性。线圈驱动器允许产生定义明确的非稳态快速变化的磁场刺激。我们从鸟类视网膜神经节细胞进行的离体多电极阵列记录表明,快速磁场刺激变化引起的感应伪影可以模拟单个电极上生物尖峰的波形。然而,如果考虑到多个电极上的伪影的时空特征,则可以将感应伪影与生物反应清楚地区分开。我们提供集成磁刺激系统的完整硬件设计数据和软件资源。