文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于多无人机协同路径规划的新型多目标蜣螂优化器。

A novel multi-objective dung beetle optimizer for Multi-UAV cooperative path planning.

作者信息

Shen Qianwen, Zhang Damin, He Qing, Ban Yunfei, Zuo Fengqin

机构信息

School of Big Data and Information Engineering, Guizhou University, Guiyang, 550000, People's Republic of China.

出版信息

Heliyon. 2024 Sep 4;10(17):e37286. doi: 10.1016/j.heliyon.2024.e37286. eCollection 2024 Sep 15.


DOI:10.1016/j.heliyon.2024.e37286
PMID:39296020
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11409186/
Abstract

Path planning for multiple unmanned aerial vehicles (UAVs) is crucial in collaborative operations and is commonly regarded as a complicated, multi-objective optimization problem. However, traditional approaches have difficulty balancing convergence and diversity, as well as effectively handling constraints. In this study, a directional evolutionary non-dominated sorting dung beetle optimizer with adaptive stochastic ranking (DENSDBO-ASR) is developed to address these issues in collaborative multi-UAV path planning. Two objectives are initially formulated: the first one represents the total cost of length and altitude, while the second represents the total cost of threat and time. Additionally, an improved multi-objective dung beetle optimizer is introduced, which integrates a directional evolutionary strategy including directional mutation and crossover, thereby accelerating convergence and enhancing global search capability. Furthermore, an adaptive stochastic ranking mechanism is proposed to successfully handle different constraints by dynamically adjusting the comparison probability. The effectiveness and superiority of DENSDBO-ASR are demonstrated by the constrained problem functions (CF) test, the Wilcoxon rank sum test, and the Friedman test. Finally, three sets of simulated tests are carried out, each including different numbers of UAVs. In the most challenging scenario, DENSDBO-ASR successfully identifies feasible paths with average values of the two objective functions as low as 637.26 and 0. The comparative results demonstrate that DENSDBO-ASR outperforms the other five algorithms in terms of convergence accuracy and population diversity, making it an exceptional optimization approach to path planning challenges.

摘要

多架无人机(UAV)的路径规划在协同作业中至关重要,通常被视为一个复杂的多目标优化问题。然而,传统方法在平衡收敛性和多样性以及有效处理约束方面存在困难。在本研究中,开发了一种具有自适应随机排序的定向进化非支配排序蜣螂优化器(DENSDBO - ASR)来解决协同多无人机路径规划中的这些问题。最初制定了两个目标:第一个目标代表长度和高度的总成本,而第二个目标代表威胁和时间的总成本。此外,引入了一种改进的多目标蜣螂优化器,它集成了包括定向变异和交叉的定向进化策略,从而加速收敛并增强全局搜索能力。此外,还提出了一种自适应随机排序机制,通过动态调整比较概率来成功处理不同的约束。通过约束问题函数(CF)测试、威尔科克森秩和检验和弗里德曼检验证明了DENSDBO - ASR的有效性和优越性。最后,进行了三组模拟测试,每组包括不同数量的无人机。在最具挑战性的场景中,DENSDBO - ASR成功识别出可行路径,两个目标函数的平均值分别低至637.26和0。比较结果表明,DENSDBO - ASR在收敛精度和种群多样性方面优于其他五种算法,使其成为解决路径规划挑战的一种出色的优化方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/848957383a4a/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/60b624eefe0a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/43dce7fded31/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/b559f2a5db1f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/96ba928d900a/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/9d2ee7aa0ce4/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/fd65a60936c2/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/c2be98bf59d7/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/1c42c5e2efa0/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/ba1a6531ed2e/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/05c717e6dbcb/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/15262ce3aae6/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/fb8029ad1d94/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/8a8136921a97/gr13a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/2ff0c8150210/gr14a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/24a2ae896e8b/gr15a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/bc635dd62fa6/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/848957383a4a/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/60b624eefe0a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/43dce7fded31/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/b559f2a5db1f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/96ba928d900a/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/9d2ee7aa0ce4/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/fd65a60936c2/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/c2be98bf59d7/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/1c42c5e2efa0/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/ba1a6531ed2e/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/05c717e6dbcb/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/15262ce3aae6/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/fb8029ad1d94/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/8a8136921a97/gr13a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/2ff0c8150210/gr14a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/24a2ae896e8b/gr15a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/bc635dd62fa6/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6d/11409186/848957383a4a/gr17.jpg

相似文献

[1]
A novel multi-objective dung beetle optimizer for Multi-UAV cooperative path planning.

Heliyon. 2024-9-4

[2]
An Improved Equilibrium Optimizer with Application in Unmanned Aerial Vehicle Path Planning.

Sensors (Basel). 2021-3-5

[3]
Multi-UAV Cooperative Trajectory Planning Based on the Modified Cheetah Optimization Algorithm.

Entropy (Basel). 2023-8-30

[4]
Multi-strategy fusion improved Northern Goshawk optimizer is used for engineering problems and UAV path planning.

Sci Rep. 2024-10-7

[5]
Multi-Strategy Improved Harris Hawk Optimization Algorithm and Its Application in Path Planning.

Biomimetics (Basel). 2024-9-12

[6]
Parallel Cooperative Coevolutionary Grey Wolf Optimizer for Path Planning Problem of Unmanned Aerial Vehicles.

Sensors (Basel). 2022-2-25

[7]
Design and validation of a multi-objective waypoint planning algorithm for UAV spraying in orchards based on improved ant colony algorithm.

Front Plant Sci. 2023-2-2

[8]
Intelligent Beetle Antennae Search for UAV Sensing and Avoidance of Obstacles.

Sensors (Basel). 2019-4-12

[9]
3D Global Path Planning Optimization for Cellular-Connected UAVs under Link Reliability Constraint.

Sensors (Basel). 2022-11-19

[10]
Three-dimensional unmanned aerial vehicle path planning utilizing artificial gorilla troops optimizer incorporating combined mutation and quadratic interpolation operators.

ISA Trans. 2024-6

引用本文的文献

[1]
A Novel Improved Dung Beetle Optimization Algorithm for Collaborative 3D Path Planning of UAVs.

Biomimetics (Basel). 2025-6-29

[2]
Multi-strategy cooperative enhancement dung beetle optimizer and its application in obstacle avoidance navigation.

Sci Rep. 2024-11-14

本文引用的文献

[1]
Secure and Privacy-Preserving Intrusion Detection and Prevention in the Internet of Unmanned Aerial Vehicles.

Sensors (Basel). 2023-9-25

[2]
Dung Beetle Optimization with Deep Feature Fusion Model for Lung Cancer Detection and Classification.

Cancers (Basel). 2023-8-5

[3]
An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges.

Artif Intell Rev. 2023-4-9

[4]
Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends.

Intell Serv Robot. 2023

[5]
Efficient and optimal penetration path planning for stealth unmanned aerial vehicle using minimal radar cross-section tactics and modified A-Star algorithm.

ISA Trans. 2023-3

[6]
Directional mutation and crossover boosted ant colony optimization with application to COVID-19 X-ray image segmentation.

Comput Biol Med. 2022-9

[7]
An Accurate UAV 3-D Path Planning Method for Disaster Emergency Response Based on an Improved Multiobjective Swarm Intelligence Algorithm.

IEEE Trans Cybern. 2023-4

[8]
Parallel Cooperative Coevolutionary Grey Wolf Optimizer for Path Planning Problem of Unmanned Aerial Vehicles.

Sensors (Basel). 2022-2-25

[9]
Using Drones to Study Human Beings: Ethical and Regulatory Issues.

Sci Eng Ethics. 2018-2-27

[10]
Diversity Assessment in Many-Objective Optimization.

IEEE Trans Cybern. 2016-5-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索