Suppr超能文献

用于从胸部X光片中检测肺结核的可解释深度神经网络支持方案。

Explainable deep-neural-network supported scheme for tuberculosis detection from chest radiographs.

作者信息

Maheswari B Uma, Sam Dahlia, Mittal Nitin, Sharma Abhishek, Kaur Sandeep, Askar S S, Abouhawwash Mohamed

机构信息

Department of Computer Science and Engineering, St. Joseph's College of Engineering, OMR, Chennai, Tamilnadu, 600119, India.

Department of Information Technology, Dr. M.G.R Educational and Research Institute, Periyar E.V.R High Road, Vishwas Nagar, Maduravoyal, Chennai, Tamilnadu, 600095, India.

出版信息

BMC Med Imaging. 2024 Feb 5;24(1):32. doi: 10.1186/s12880-024-01202-x.

Abstract

Chest radiographs are examined in typical clinical settings by competent physicians for tuberculosis diagnosis. However, this procedure is time consuming and subjective. Due to the growing usage of machine learning techniques in applied sciences, researchers have begun applying comparable concepts to medical diagnostics, such as tuberculosis screening. In the period of extremely deep neural nets which comprised of hundreds of convolution layers for feature extraction, we create a shallow-CNN for screening of TB condition from Chest X-rays so that the model is able to offer appropriate interpretation for right diagnosis. The suggested model consists of four convolution-maxpooling layers with various hyperparameters that were optimized for optimal performance using a Bayesian optimization technique. The model was reported with a peak classification accuracy, F1-score, sensitivity and specificity of 0.95. In addition, the receiver operating characteristic (ROC) curve for the proposed shallow-CNN showed a peak area under the curve value of 0.976. Moreover, we have employed class activation maps (CAM) and Local Interpretable Model-agnostic Explanations (LIME), explainer systems for assessing the transparency and explainability of the model in comparison to a state-of-the-art pre-trained neural net such as the DenseNet.

摘要

在典型的临床环境中,由专业医生对胸部X光片进行检查以诊断结核病。然而,这个过程既耗时又主观。由于机器学习技术在应用科学中的使用日益增加,研究人员已开始将类似概念应用于医学诊断,如结核病筛查。在由数百个卷积层组成用于特征提取的极深神经网络时期,我们创建了一个浅卷积神经网络(shallow-CNN)来从胸部X光片中筛查结核病状况,以便该模型能够为正确诊断提供恰当的解释。所建议的模型由四个卷积-最大池化层组成,这些层具有各种超参数,使用贝叶斯优化技术对其进行了优化以实现最佳性能。据报道,该模型的峰值分类准确率、F1分数、灵敏度和特异性为0.95。此外,所提出的浅卷积神经网络的受试者工作特征(ROC)曲线显示曲线下面积峰值为0.976。此外,我们采用了类别激活映射(CAM)和局部可解释模型无关解释(LIME),这两种解释系统用于与诸如DenseNet等先进的预训练神经网络相比,评估该模型的透明度和可解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d814/10840197/a8fae16914c4/12880_2024_1202_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验