Ballantyne Ashley P, Liu Zhihua, Anderegg William Rl, Yu Zicheng, Stoy Paul, Poulter Ben, Vanderwall Joseph, Watts Jennifer, Kelsey Kathy, Neff Jason
Department of Ecosystem and Conservation Sciences University of Montana Missoula MT.
Laboratoire des Sciences du Climat et de l'Environnement Gif-Sur-Yvette France.
Front Ecol Environ. 2021 Feb;19(1):57-65. doi: 10.1002/fee.2296. Epub 2021 Feb 1.
Understanding carbon (C) dynamics from ecosystem to global scales remains a challenge. Although expansion of global carbon dioxide (CO) observatories makes it possible to estimate C-cycle processes from ecosystem to global scales, these estimates do not necessarily agree. At the continental US scale, only 5% of C fixed through photosynthesis remains as net ecosystem exchange (NEE), but ecosystem measurements indicate that only 2% of fixed C remains in grasslands, whereas as much as 30% remains in needleleaf forests. The wet and warm Southeast has the highest gross primary productivity and the relatively wet and cool Midwest has the highest NEE, indicating important spatial mismatches. Newly available satellite and atmospheric data can be combined in innovative ways to identify potential C loss pathways to reconcile these spatial mismatches. Independent datasets compiled from terrestrial and aquatic environments can now be combined to advance C-cycle science across the land-water interface.
理解从生态系统到全球尺度的碳(C)动态变化仍然是一项挑战。尽管全球二氧化碳(CO₂)观测站的扩展使得从生态系统到全球尺度估算碳循环过程成为可能,但这些估算结果并不一定一致。在美国大陆尺度上,通过光合作用固定的碳只有5%作为净生态系统交换量(NEE)留存下来,但生态系统测量表明,在草原中固定碳只有2%留存,而在针叶林中这一比例高达30%。湿润温暖的东南部地区总初级生产力最高,相对湿润凉爽的中西部地区净生态系统交换量最高,这表明存在重要的空间不匹配。新获得的卫星和大气数据可以以创新方式结合起来,以识别潜在的碳损失途径,从而协调这些空间不匹配。现在可以将从陆地和水生环境汇编的独立数据集结合起来,以推动跨陆地-水界面的碳循环科学发展。