Suppr超能文献

一种用于德尔塔型 COVID-19 检测的新型深度学习和集成学习机制。

A Novel Deep Learning and Ensemble Learning Mechanism for Delta-Type COVID-19 Detection.

机构信息

Department of Accounting and Information Systems, College of Business and Economics, Doha, Qatar.

Department of Computer Science, University of Swabi, Swabi, Pakistan.

出版信息

Front Public Health. 2022 Jul 8;10:875971. doi: 10.3389/fpubh.2022.875971. eCollection 2022.

Abstract

Recently, the novel coronavirus disease 2019 (COVID-19) has posed many challenges to the research community by presenting grievous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that results in a huge number of mortalities and high morbidities worldwide. Furthermore, the symptoms-based variations in virus type add new challenges for the research and practitioners to combat. COVID-19-infected patients comprise trenchant radiographic visual features, including dry cough, fever, dyspnea, fatigue, etc. Chest X-ray is considered a simple and non-invasive clinical adjutant that performs a key role in the identification of these ocular responses related to COVID-19 infection. Nevertheless, the defined availability of proficient radiologists to understand the X-ray images and the elusive aspects of disease radiographic replies to remnant the biggest bottlenecks in manual diagnosis. To address these issues, the proposed research study presents a hybrid deep learning model for the accurate diagnosing of Delta-type COVID-19 infection using X-ray images. This hybrid model comprises visual geometry group 16 (VGG16) and a support vector machine (SVM), where the VGG16 is accustomed to the identification process, while the SVM is used for the severity-based analysis of the infected people. An overall accuracy rate of 97.37% is recorded for the assumed model. Other performance metrics such as the area under the curve (AUC), precision, F-score, misclassification rate, and confusion matrix are used for validation and analysis purposes. Finally, the applicability of the presumed model is assimilated with other relevant techniques. The high identification rates shine the applicability of the formulated hybrid model in the targeted research domain.

摘要

最近,2019 年新型冠状病毒病 (COVID-19) 给研究界带来了许多挑战,因为它呈现出严重的急性严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2),导致全球大量死亡和高发病率。此外,基于症状的病毒类型变化为研究人员和从业者带来了新的挑战,需要他们进行对抗。COVID-19 感染患者具有鲜明的放射学视觉特征,包括干咳、发热、呼吸困难、疲劳等。胸部 X 射线被认为是一种简单而无创的临床辅助手段,在识别这些与 COVID-19 感染相关的眼部反应方面发挥着关键作用。然而,熟练放射科医生的明确可用性来理解 X 射线图像和疾病放射学反应的难以捉摸的方面仍然是手动诊断的最大瓶颈。为了解决这些问题,拟议的研究提出了一种混合深度学习模型,用于使用 X 射线图像对 Delta 型 COVID-19 感染进行准确诊断。该混合模型包括视觉几何组 16 (VGG16) 和支持向量机 (SVM),其中 VGG16 用于识别过程,而 SVM 用于感染人群的严重程度分析。假设模型记录了 97.37%的总体准确率。其他性能指标,如曲线下面积 (AUC)、精度、F 分数、误分类率和混淆矩阵,用于验证和分析目的。最后,将假设模型的适用性与其他相关技术进行了同化。高识别率表明所提出的混合模型在目标研究领域具有适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27da/9304977/df69dfa37dde/fpubh-10-875971-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验