Suppr超能文献

利用胸部 X 光图像检测 COVID-19 的高效深度学习模型。

An Efficient Deep Learning Model to Detect COVID-19 Using Chest X-ray Images.

机构信息

School of Computing Sciences and Computer Engineering, The University of Southern Mississippi, Hattiesburg, MS 39406, USA.

Department of Epidemiology and Biostatistics, School of Public Health, College of Health Sciences, Jackson State University, Jackson, MS 39213, USA.

出版信息

Int J Environ Res Public Health. 2022 Feb 11;19(4):2013. doi: 10.3390/ijerph19042013.

Abstract

The tragic pandemic of COVID-19, due to the Severe Acute Respiratory Syndrome coronavirus-2 or SARS-CoV-2, has shaken the entire world, and has significantly disrupted healthcare systems in many countries. Because of the existing challenges and controversies to testing for COVID-19, improved and cost-effective methods are needed to detect the disease. For this purpose, machine learning (ML) has emerged as a strong forecasting method for detecting COVID-19 from chest X-ray images. In this paper, we used a Deep Learning Method (DLM) to detect COVID-19 using chest X-ray (CXR) images. Radiographic images are readily available and can be used effectively for COVID-19 detection compared to other expensive and time-consuming pathological tests. We used a dataset of 10,040 samples, of which 2143 had COVID-19, 3674 had pneumonia (but not COVID-19), and 4223 were normal (not COVID-19 or pneumonia). Our model had a detection accuracy of 96.43% and a sensitivity of 93.68%. The area under the ROC curve was 99% for COVID-19, 97% for pneumonia (but not COVID-19 positive), and 98% for normal cases. In conclusion, ML approaches may be used for rapid analysis of CXR images and thus enable radiologists to filter potential candidates in a time-effective manner to detect COVID-19.

摘要

由于严重急性呼吸系统综合症冠状病毒 2 型(SARS-CoV-2)引发的 COVID-19 悲剧性大流行震撼了整个世界,并严重扰乱了许多国家的医疗保健系统。由于 COVID-19 检测存在挑战和争议,因此需要改进和具有成本效益的方法来检测这种疾病。为此,机器学习(ML)已成为从胸部 X 光图像中检测 COVID-19 的强大预测方法。在本文中,我们使用深度学习方法(DLM)来使用胸部 X 光(CXR)图像检测 COVID-19。与其他昂贵且耗时的病理测试相比,射线照相图像易于获取,可有效用于 COVID-19 检测。我们使用了一个包含 10040 个样本的数据集,其中 2143 个样本患有 COVID-19,3674 个样本患有肺炎(但不是 COVID-19),4223 个样本正常(既不是 COVID-19 也不是肺炎)。我们的模型检测准确率为 96.43%,灵敏度为 93.68%。COVID-19 的 ROC 曲线下面积为 99%,肺炎(但不是 COVID-19 阳性)为 97%,正常病例为 98%。总之,ML 方法可用于快速分析 CXR 图像,从而使放射科医生能够有效地筛选潜在的 COVID-19 候选者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d426/8871610/db57911bf66f/ijerph-19-02013-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验