Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, The Netherlands.
Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
J Chem Inf Model. 2022 Aug 8;62(15):3589-3603. doi: 10.1021/acs.jcim.2c00492. Epub 2022 Jul 25.
Ingested nanomaterials are exposed to many metabolites that are produced, modified, or regulated by members of the enteric microbiota. The adsorption of these metabolites potentially affects the identity, fate, and biodistribution of nanomaterials passing the gastrointestinal tract. Here, we explore these interactions using in silico methods, focusing on a concise overview of 170 unique enteric microbial metabolites which we compiled from the literature. First, we construct quantitative structure-activity relationship (QSAR) models to predict their adsorption affinity to 13 metal nanomaterials, 5 carbon nanotubes, and 1 fullerene. The models could be applied to predict log values for 60 metabolites and were particularly applicable to 'phenolic, benzoyl and phenyl derivatives', 'tryptophan precursors and metabolites', 'short-chain fatty acids', and 'choline metabolites'. The correlations of these predictions to biological surface adsorption index descriptors indicated that hydrophobicity-driven interactions contribute most to the overall adsorption affinity, while hydrogen-bond interactions and polarity/polarizability-driven interactions differentiate the affinity to metal and carbon nanomaterials. Next, we use molecular dynamics (MD) simulations to obtain direct molecular information for a selection of vitamins that could not be assessed quantitatively using QSAR models. This showed how large and flexible metabolites can gain stability on the nanomaterial surface via conformational changes. Additionally, unconstrained MD simulations provided excellent support for the main interaction types identified by QSAR analysis. Combined, these results enable assessing the adsorption affinity for many enteric microbial metabolites quantitatively and support the qualitative assessment of an even larger set of complex and biologically relevant microbial metabolites to carbon and metal nanomaterials.
摄入的纳米材料会暴露于许多代谢物中,这些代谢物是由肠道微生物群落中的成员产生、修饰或调节的。这些代谢物的吸附作用可能会影响通过胃肠道的纳米材料的特性、归宿和生物分布。在这里,我们使用计算方法来探索这些相互作用,重点是从文献中综合了 170 种独特的肠道微生物代谢物,并对其进行简要概述。首先,我们构建定量构效关系(QSAR)模型,以预测它们对 13 种金属纳米材料、5 种碳纳米管和 1 种富勒烯的吸附亲和力。这些模型可用于预测 60 种代谢物的 log 值,并且特别适用于“酚类、苯甲酰基和苯基衍生物”、“色氨酸前体和代谢物”、“短链脂肪酸”和“胆碱代谢物”。这些预测值与生物表面吸附指数描述符的相关性表明,疏水性驱动的相互作用对整体吸附亲和力的贡献最大,而氢键相互作用和极性/极化性驱动的相互作用则区分了对金属和碳纳米材料的亲和力。接下来,我们使用分子动力学(MD)模拟来获取一些无法使用 QSAR 模型进行定量评估的维生素的直接分子信息。这表明了大而灵活的代谢物如何通过构象变化在纳米材料表面获得稳定性。此外,无约束的 MD 模拟为 QSAR 分析中确定的主要相互作用类型提供了极好的支持。综合这些结果,可以对许多肠道微生物代谢物的吸附亲和力进行定量评估,并支持对更多复杂且具有生物学相关性的微生物代谢物与碳和金属纳米材料的定性评估。