Suppr超能文献

DeepBindBC:一种实用的深度学习方法,用于在虚拟筛选中识别天然样蛋白-配体复合物。

DeepBindBC: A practical deep learning method for identifying native-like protein-ligand complexes in virtual screening.

机构信息

Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, PR China; Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518 055, PR China.

School of Medicine, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China.

出版信息

Methods. 2022 Sep;205:247-262. doi: 10.1016/j.ymeth.2022.07.009. Epub 2022 Jul 22.

Abstract

Identifying native-like protein-ligand complexes (PLCs) from an abundance of docking decoys is critical for large-scale virtual drug screening in early-stage drug discovery lead searching efforts. Providing reliable prediction is still a challenge for most current affinity predicting models because of a lack of non-binding data during model training, lost critical physical-chemical features, and difficulties in learning abstract information with limited neural layers. In this work, we proposed a deep learning model, DeepBindBC, for classifying putative ligands as binding or non-binding. Our model incorporates information on non-binding interactions, making it more suitable for real applications. ResNet model architecture and more detailed atom type representation guarantee implicit features can be learned more accurately. Here, we show that DeepBindBC outperforms Autodock Vina, Pafnucy, and DLSCORE for three DUD.E testing sets. Moreover, DeepBindBC identified a novel human pancreatic α-amylase binder validated by a fluorescence spectral experiment (K = 1.0 × 10 M). Furthermore, DeepBindBC can be used as a core component of a hybrid virtual screening pipeline that incorporating many other complementary methods, such as DFCNN, Autodock Vina docking, and pocket molecular dynamics simulation. Additionally, an online web server based on the model is available at http://cbblab.siat.ac.cn/DeepBindBC/index.php for the user's convenience. Our model and the web server provide alternative tools in the early steps of drug discovery by providing accurate identification of native-like PLCs.

摘要

从大量对接伪药中识别天然样蛋白-配体复合物(PLCs)对于早期药物发现先导化合物搜索中大规模虚拟药物筛选至关重要。由于在模型训练过程中缺乏非结合数据、丢失关键理化特征以及在有限的神经网络层中学习抽象信息的困难,大多数当前亲和力预测模型仍然难以提供可靠的预测。在这项工作中,我们提出了一种深度学习模型 DeepBindBC,用于将假定的配体分类为结合或非结合。我们的模型整合了非结合相互作用的信息,使其更适用于实际应用。ResNet 模型架构和更详细的原子类型表示保证了隐含特征可以更准确地学习。在这里,我们表明 DeepBindBC 在三个 DUD.E 测试集中优于 Autodock Vina、Pafnucy 和 DLSCORE。此外,DeepBindBC 通过荧光光谱实验(K = 1.0×10 M)鉴定了一种新型人胰腺α-淀粉酶结合物。此外,DeepBindBC 可以用作混合虚拟筛选管道的核心组件,该管道结合了许多其他互补方法,如 DFCNN、Autodock Vina 对接和口袋分子动力学模拟。此外,为方便用户,基于该模型的在线网络服务器可在 http://cbblab.siat.ac.cn/DeepBindBC/index.php 上获得。我们的模型和网络服务器通过准确识别天然样 PLCs,为药物发现的早期步骤提供了替代工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验