文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Semiconductor Quantum Dots as Target Analytes: Properties, Surface Chemistry and Detection.

作者信息

Sanmartín-Matalobos Jesús, Bermejo-Barrera Pilar, Aboal-Somoza Manuel, Fondo Matilde, García-Deibe Ana M, Corredoira-Vázquez Julio, Alves-Iglesias Yeneva

机构信息

Coordination and Supramolecular Chemistry Group (SupraMetal), Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Materials (iMATUS), Universidade de Santiago de Compostela, Avenida das Ciencias s/n, 15782 Santiago de Compostela, Spain.

Trace Element, Speciation and Spectroscopy Group (GETEE), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Institute of Materials (iMATUS), Universidade de Santiago de Compostela, Avenida das Ciencias s/n, 15782 Santiago de Compostela, Spain.

出版信息

Nanomaterials (Basel). 2022 Jul 21;12(14):2501. doi: 10.3390/nano12142501.


DOI:10.3390/nano12142501
PMID:35889725
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9318497/
Abstract

Since the discovery of Quantum Dots (QDs) by Alexey I. Ekimov in 1981, the interest of researchers in that particular type of nanomaterials (NMs) with unique optical and electrical properties has been increasing year by year. Thus, since 2009, the number of scientific articles published on this topic has not been less than a thousand a year. The increasing use of QDs due to their biomedical, pharmaceutical, biological, photovoltaics or computing applications, as well as many other high-tech uses such as for displays and solid-state lighting (SSL), has given rise to a considerable number of studies about its potential toxicity. However, there are a really low number of reported studies on the detection and quantification of QDs, and these include ICP-MS and electrochemical analysis, which are the most common quantification techniques employed for this purpose. The knowledge of chemical phenomena occurring on the surface of QDs is crucial for understanding the interactions of QDs with species dissolved in the dispersion medium, while it paves the way for a widespread use of chemosensors to facilitate its detection. Keeping in mind both human health and environmental risks of QDs as well as the scarcity of analytical techniques and methodological approaches for their detection, the adaptation of existing techniques and methods used with other NMs appears necessary. In order to provide a multidisciplinary perspective on QD detection, this review focused on three interrelated key aspects of QDs: properties, surface chemistry and detection.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ca/9318497/0032f237ae5f/nanomaterials-12-02501-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ca/9318497/146f22281b48/nanomaterials-12-02501-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ca/9318497/ad72f391b89c/nanomaterials-12-02501-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ca/9318497/7f6f7fe6b3fd/nanomaterials-12-02501-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ca/9318497/febf2c2f9da2/nanomaterials-12-02501-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ca/9318497/f3851ab37b19/nanomaterials-12-02501-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ca/9318497/c930d901d51a/nanomaterials-12-02501-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ca/9318497/bb87b426a33c/nanomaterials-12-02501-g007a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ca/9318497/0032f237ae5f/nanomaterials-12-02501-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ca/9318497/146f22281b48/nanomaterials-12-02501-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ca/9318497/ad72f391b89c/nanomaterials-12-02501-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ca/9318497/7f6f7fe6b3fd/nanomaterials-12-02501-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ca/9318497/febf2c2f9da2/nanomaterials-12-02501-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ca/9318497/f3851ab37b19/nanomaterials-12-02501-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ca/9318497/c930d901d51a/nanomaterials-12-02501-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ca/9318497/bb87b426a33c/nanomaterials-12-02501-g007a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ca/9318497/0032f237ae5f/nanomaterials-12-02501-g008.jpg

相似文献

[1]
Semiconductor Quantum Dots as Target Analytes: Properties, Surface Chemistry and Detection.

Nanomaterials (Basel). 2022-7-21

[2]
The Role of Colloidal Stability and Charge in Functionalization of Aqueous Quantum Dots.

Acc Chem Res. 2018-11-20

[3]
Semiconductor quantum dots in photoelectrochemical sensors from fabrication to biosensing applications.

Analyst. 2023-4-11

[4]
Electrochemical Gelation of Metal Chalcogenide Quantum Dots: Applications in Gas Sensing and Photocatalysis.

Acc Chem Res. 2023-5-2

[5]
Luminescent quantum dots: Synthesis, optical properties, bioimaging and toxicity.

Adv Drug Deliv Rev. 2023-6

[6]
Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies.

Acc Chem Res. 2012-8-1

[7]
Self-Assembly of Semiconductor Quantum Dots using Organic Templates.

Chemistry. 2020-4-15

[8]
Cu-1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid-quantum dot-vascular endothelial growth factor

2004

[9]
Composition-Tunable Optical Properties of Zn CdS Quantum Dot-Carboxymethylcellulose Conjugates: Towards One-Pot Green Synthesis of Multifunctional Nanoplatforms for Biomedical and Environmental Applications.

Nanoscale Res Lett. 2017-12

[10]
Luminescence encoding of polymer microbeads with organic dyes and semiconductor quantum dots during polymerization.

Sci Rep. 2022-7-14

引用本文的文献

[1]
Binding of Cytochrome c to CdTe Colloidal Quantum DotsInvestigation of Stoichiometry and Thermodynamics of the Nanohybrid Creation Process.

ACS Omega. 2025-7-3

[2]
The brightness of lectins conjugated to quantum dots.

Biophys Rev. 2025-2-13

[3]
Application of metal stable isotopes labeling and elemental mass spectrometry for biomacromolecule profiling.

Biophys Rep. 2025-4-30

[4]
Advances in nanomaterials for precision drug delivery: Insights into pharmacokinetics and toxicity.

Bioimpacts. 2024-11-2

[5]
Advancing Cancer Therapy with Quantum Dots and Other Nanostructures: A Review of Drug Delivery Innovations, Applications, and Challenges.

Cancers (Basel). 2025-3-4

[6]
Curcumin-Based Nanoparticles: Advancements and Challenges in Tumor Therapy.

Pharmaceutics. 2025-1-15

[7]
Surface interactions of gelatin-sourced carbon quantum dots with a model globular protein: insights into carbon-based nanomaterials and biological systems.

Nanoscale Adv. 2024-12-19

[8]
Green synthesis and multifaceted applications: challenges and innovations in carbon dot nanocomposites.

Discov Nano. 2024-12-17

[9]
Photocatalytic Degradation of Organic Dyes by Magnetite Nanoparticles Prepared by Co-Precipitation.

Int J Mol Sci. 2024-7-18

[10]
Influence of Structural Properties of Oleic Acid-Capped CdSe/ZnS Quantum Dots in the Detection of Hg Ions.

J Fluoresc. 2024-7-16

本文引用的文献

[1]
Synthesis and spectroscopic studies of functionalized graphene quantum dots with diverse fluorescence characteristics.

RSC Adv. 2018-3-22

[2]
Targeted Positioning of Quantum Dots Inside 3D Silicon Photonic Crystals Revealed by Synchrotron X-ray Fluorescence Tomography.

ACS Nano. 2022-3-22

[3]
Theoretical investigation complexation characteristics and UV-Vis absorption spectral properties of CdTe QDs with four capping agents.

J Mol Model. 2022-1-5

[4]
Observation of ordered organic capping ligands on semiconducting quantum dots via powder X-ray diffraction.

Nat Commun. 2021-5-11

[5]
Synthesis, optical properties and tuning size of CdSe quantum dots by variation capping agent.

Spectrochim Acta A Mol Biomol Spectrosc. 2021-4-5

[6]
Combining HR-TEM and XPS to elucidate the core-shell structure of ultrabright CdSe/CdS semiconductor quantum dots.

Sci Rep. 2020-11-26

[7]
Analysis of the atomic structure of CdS magic-size clusters by X-ray absorption spectroscopy.

Nanoscale. 2020-10-1

[8]
Influence of Size and Shape Anisotropy on Optical Properties of CdSe Quantum Dots.

Nanomaterials (Basel). 2020-8-12

[9]
Electrogenerated Chemiluminescence and Electroluminescence of N-Doped Graphene Quantum Dots Fabricated from an Electrochemical Exfoliation Process in Nitrogen-Containing Electrolytes.

Chemistry. 2020-12-4

[10]
Optimizing Quantum Dot Probe Size for Single-Receptor Imaging.

ACS Nano. 2020-7-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索