Makhtoum Somayyeh, Sabouri Hossein, Gholizadeh Abdollatif, Ahangar Leila, Katouzi Mahnaz
Department of Plant Production, Faculty of Agriculture Science and Natural Resources, Gonbad Kavous University, Gonbad 4971799151, Iran.
Crop Génome Dynamics Group, Agroscope Changins, 1260 Nyon, Switzerland.
BioTech (Basel). 2022 Jul 15;11(3):26. doi: 10.3390/biotech11030026.
To identify the genomic regions for the physiological and morphological traits of barley genotypes under normal salinity and drought, a set of 103 recombinant inbred line (RIL) populations, developed between Badia and Kavir crosses, was evaluated under phytotron conditions in a completely randomized design in 2019. Linkage maps were prepared using 152 SSR markers, 72 ISSR, 7 IRAP, 29 CAAT, 27 SCoT, and 15 iPBS alleles. The markers were assigned to seven barley chromosomes and covered 999.29 centimorgans (cM) of the barley genome. In addition, composite interval mapping showed 8, 9, and 26 quantitative trait loci (QTLs) under normal, drought, and salinity stress conditions, respectively. Our results indicate the importance of chromosomes 1, 4, 5, and 7 in salinity stress. These regions were involved in genes controlling stomata length (LR), leaf number (LN), leaf weight (LW), and genetic score (SCR). Three major stable pleiotropic QTLs (i.e., qSCS-1, qRLS-1, and qLNN-1) were associated with SCR, root length (RL), and root number (RN) in both treatments (i.e., normal and salinity), and two major stable pleiotropic QTLs (i.e., qSNN-3 and qLWS-3) associated with the stomata number (SN) and LW appeared to be promising for marker-assisted selection (MAS). Two major-effect QTLs (i.e., SCot8-B-CAAT5-D and HVM54-Bmag0571) on chromosomes 1 and 2 were characterized for their positive allele effect, which can be used to develop barley varieties concerning drought conditions. The new alleles (i.e., qLWS-4a, qSLS-4, qLNS-7b, qSCS-7, and qLNS-7a) identified in this study are useful in pyramiding elite alleles for molecular breeding and marker assisted selection for improving salinity tolerance in barley.
为了确定正常盐度和干旱条件下大麦基因型生理和形态性状的基因组区域,2019年在人工气候箱条件下,以完全随机设计对一组由Badia和Kavir杂交培育的103个重组自交系(RIL)群体进行了评估。使用152个SSR标记、72个ISSR、7个IRAP、29个CAAT、27个SCoT和15个iPBS等位基因构建了连锁图谱。这些标记被定位到七条大麦染色体上,覆盖了大麦基因组的999.29厘摩(cM)。此外,复合区间作图分别在正常、干旱和盐胁迫条件下显示出8个、9个和26个数量性状位点(QTL)。我们的结果表明,第1、4、5和7号染色体在盐胁迫中具有重要作用。这些区域涉及控制气孔长度(LR)、叶片数量(LN)、叶片重量(LW)和遗传评分(SCR)的基因。三个主要的稳定多效性QTL(即qSCS - 1、qRLS - 1和qLNN - 1)在两种处理(即正常和盐胁迫)中均与SCR、根长(RL)和根数量(RN)相关,两个主要的稳定多效性QTL(即qSNN - 3和qLWS - 3)与气孔数量(SN)和LW相关,似乎对标记辅助选择(MAS)很有前景。第1和2号染色体上的两个主效QTL(即SCot8 - B - CAAT5 - D和HVM54 - Bmag0571)因其正向等位基因效应而被鉴定,可用于培育适应干旱条件的大麦品种。本研究中鉴定出的新等位基因(即qLWS - 4a、qSLS - 4、qLNS - 7b、qSCS - 7和qLNS - 7a)有助于聚合优良等位基因进行分子育种和标记辅助选择,以提高大麦的耐盐性。