Suppr超能文献

人工智能降噪可提高儿科超低剂量胸部 CT 扫描的图像质量和放射学工作流程。

AI Denoising Improves Image Quality and Radiological Workflows in Pediatric Ultra-Low-Dose Thorax Computed Tomography Scans.

机构信息

Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, D-72076 Tuebingen, Germany.

出版信息

Tomography. 2022 Jun 24;8(4):1678-1689. doi: 10.3390/tomography8040140.

Abstract

(1) This study evaluates the impact of an AI denoising algorithm on image quality, diagnostic accuracy, and radiological workflows in pediatric chest ultra-low-dose CT (ULDCT). (2) Methods: 100 consecutive pediatric thorax ULDCT were included and reconstructed using weighted filtered back projection (wFBP), iterative reconstruction (ADMIRE 2), and AI denoising (PixelShine). Place-consistent noise measurements were used to compare objective image quality. Eight blinded readers independently rated the subjective image quality on a Likert scale (1 = worst to 5 = best). Each reader wrote a semiquantitative report to evaluate disease severity using a severity score with six common pathologies. The time to diagnosis was measured for each reader to compare the possible workflow benefits. Properly corrected mixed-effects analysis with post-hoc subgroup tests were used. Spearman’s correlation coefficient measured inter-reader agreement for the subjective image quality analysis and the severity score sheets. (3) Results: The highest noise was measured for wFBP, followed by ADMIRE 2, and PixelShine (76.9 ± 9.62 vs. 43.4 ± 4.45 vs. 34.8 ± 3.27 HU; each p < 0.001). The highest subjective image quality was measured for PixelShine, followed by ADMIRE 2, and wFBP (4 (4−5) vs. 3 (4−5) vs. 3 (2−4), each p < 0.001) with good inter-rater agreement (r ≥ 0.790; p ≤ 0.001). In diagnostic accuracy analysis, there was a good inter-rater agreement between the severity scores (r ≥ 0.764; p < 0.001) without significant differences between severity score items per reconstruction mode (F (5.71; 566) = 0.792; p = 0.570). The shortest time to diagnosis was measured for the PixelShine datasets, followed by ADMIRE 2, and wFBP (2.28 ± 1.56 vs. 2.45 ± 1.90 vs. 2.66 ± 2.31 min; F (1.000; 99.00) = 268.1; p < 0.001). (4) Conclusions: AI denoising significantly improves image quality in pediatric thorax ULDCT without compromising the diagnostic confidence and reduces the time to diagnosis substantially.

摘要

(1) 本研究评估了 AI 降噪算法对儿科胸部超低剂量 CT (ULDCT) 的图像质量、诊断准确性和放射学工作流程的影响。(2) 方法:纳入 100 例连续的儿科胸部 ULDCT,使用加权滤波反投影 (wFBP)、迭代重建 (ADMIRE 2) 和 AI 降噪 (PixelShine) 进行重建。使用位置一致的噪声测量来比较客观的图像质量。八位盲法读者使用李克特量表(1=最差到 5=最佳)独立评估主观图像质量。每位读者都会写一份半定量报告,使用六个常见病变的严重程度评分来评估疾病严重程度。测量每位读者的诊断时间,以比较可能的工作流程优势。使用适当校正的混合效应分析和事后亚组检验进行 Spearman 相关系数分析,以评估主观图像质量分析和严重程度评分表的读者间一致性。(3) 结果:wFBP 的噪声最高,其次是 ADMIRE 2 和 PixelShine(76.9 ± 9.62 比 43.4 ± 4.45 比 34.8 ± 3.27 HU;均 p < 0.001)。PixelShine 的主观图像质量最高,其次是 ADMIRE 2 和 wFBP(4 (4−5) 比 3 (4−5) 比 3 (2−4);均 p < 0.001),读者间具有良好的一致性(r ≥ 0.790;p ≤ 0.001)。在诊断准确性分析中,严重程度评分之间的读者间一致性较好(r ≥ 0.764;p < 0.001),但重建模式下的严重程度评分项目之间无显著差异(F (5.71;566) = 0.792;p = 0.570)。PixelShine 数据集的诊断时间最短,其次是 ADMIRE 2 和 wFBP(2.28 ± 1.56 比 2.45 ± 1.90 比 2.66 ± 2.31 min;F (1.000;99.00) = 268.1;p < 0.001)。(4) 结论:AI 降噪可显著提高儿科胸部 ULDCT 的图像质量,而不影响诊断信心,并大大缩短诊断时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/432c/9326759/2f6619d8c09f/tomography-08-00140-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验