Laboratory for Augmented Intelligence in Imaging, Department of Radiology, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
The Jackson Laboratory, Bar Harbor, ME 04609, USA.
Tomography. 2022 Jul 13;8(4):1791-1803. doi: 10.3390/tomography8040151.
The emergence of the COVID-19 pandemic over a relatively brief interval illustrates the need for rapid data-driven approaches to facilitate clinical decision making. We examined a machine learning process to predict inpatient mortality among COVID-19 patients using clinical and chest radiographic data. Modeling was performed with a de-identified dataset of encounters prior to widespread vaccine availability. Non-imaging predictors included demographics, pre-admission clinical history, and past medical history variables. Imaging features were extracted from chest radiographs by applying a deep convolutional neural network with transfer learning. A multi-layer perceptron combining 64 deep learning features from chest radiographs with 98 patient clinical features was trained to predict mortality. The Local Interpretable Model-Agnostic Explanations (LIME) method was used to explain model predictions. Non-imaging data alone predicted mortality with an ROC-AUC of 0.87 ± 0.03 (mean ± SD), while the addition of imaging data improved prediction slightly (ROC-AUC: 0.91 ± 0.02). The application of LIME to the combined imaging and clinical model found HbA1c values to contribute the most to model prediction (17.1 ± 1.7%), while imaging contributed 8.8 ± 2.8%. Age, gender, and BMI contributed 8.7%, 8.2%, and 7.1%, respectively. Our findings demonstrate a viable explainable AI approach to quantify the contributions of imaging and clinical data to COVID mortality predictions.
COVID-19 大流行在相对较短的时间内出现,这说明了需要快速的数据驱动方法来促进临床决策。我们研究了一种机器学习过程,使用临床和胸部 X 线数据来预测 COVID-19 患者的住院死亡率。建模是在广泛使用疫苗之前的一个匿名数据集上进行的。非成像预测因素包括人口统计学、入院前临床病史和既往病史变量。通过应用具有迁移学习的深度卷积神经网络从胸部 X 光片中提取成像特征。多层感知器结合来自胸部 X 光片的 64 个深度学习特征和 98 个患者临床特征来训练预测死亡率。使用局部可解释模型不可知解释(LIME)方法来解释模型预测。非成像数据单独预测死亡率的 ROC-AUC 为 0.87 ± 0.03(平均值 ± SD),而添加成像数据则略微提高了预测精度(ROC-AUC:0.91 ± 0.02)。将 LIME 应用于组合成像和临床模型发现,HbA1c 值对模型预测的贡献最大(17.1 ± 1.7%),而成像的贡献为 8.8 ± 2.8%。年龄、性别和 BMI 的贡献分别为 8.7%、8.2%和 7.1%。我们的研究结果表明,一种可行的可解释人工智能方法可以量化成像和临床数据对 COVID 死亡率预测的贡献。