Suppr超能文献

三维光学体型和特征可提高对不同成年人代谢疾病风险的预测能力。

Three-dimensional optical body shape and features improve prediction of metabolic disease risk in a diverse sample of adults.

机构信息

Graduate Program in Human Nutrition, University of Hawai'i Manoa, Honolulu, Hawaii, USA.

Department of Epidemiology, University of Hawai'i Cancer Center, Honolulu, Hawaii, USA.

出版信息

Obesity (Silver Spring). 2022 Aug;30(8):1589-1598. doi: 10.1002/oby.23470.

Abstract

OBJECTIVE

This study examined whether body shape and composition obtained by three-dimensional optical (3DO) scanning improved the prediction of metabolic syndrome (MetS) prevalence compared with BMI and demographics.

METHODS

A diverse ambulatory adult population underwent whole-body 3DO scanning, blood tests, manual anthropometrics, and blood pressure assessment in the Shape Up! Adults study. MetS prevalence was evaluated based on 2005 National Cholesterol Education Program criteria, and prediction of MetS involved logistic regression to assess (1) BMI, (2) demographics-adjusted BMI, (3) 85 3DO anthropometry and body composition measures, and (4) BMI + 3DO + demographics models. Receiver operating characteristic area under the curve (AUC) values were generated for each predictive model.

RESULTS

A total of 501 participants (280 female) were recruited, with 87 meeting the criteria for MetS. Compared with the BMI model (AUC = 0.819), inclusion of age, sex, and race increased the AUC to 0.861, and inclusion of 3DO measures further increased the AUC to 0.917. The overall integrated discrimination improvement between the 3DO + demographics and the BMI model was 0.290 (p < 0.0001) with a net reclassification improvement of 0.214 (p < 0.0001).

CONCLUSIONS

Body shape measures from an accessible 3DO scan, adjusted for demographics, predicted MetS better than demographics and/or BMI alone. Risk classification in this population increased by 29% when using 3DO scanning.

摘要

目的

本研究旨在探讨通过三维光学(3DO)扫描获得的体型和成分是否比 BMI 和人口统计学数据更能预测代谢综合征(MetS)的患病率。

方法

在“Shape Up!成人研究”中,对不同的门诊成年人群进行全身 3DO 扫描、血液检查、手动人体测量和血压评估。根据 2005 年国家胆固醇教育计划标准评估 MetS 的患病率,并通过逻辑回归评估 MetS 的预测,包括(1)BMI,(2)人口统计学调整后的 BMI,(3)85 项 3DO 人体测量和身体成分测量,以及(4)BMI+3DO+人口统计学模型。为每个预测模型生成接收者操作特征曲线下面积(AUC)值。

结果

共招募了 501 名参与者(280 名女性),其中 87 名符合 MetS 标准。与 BMI 模型(AUC=0.819)相比,纳入年龄、性别和种族可将 AUC 提高至 0.861,而纳入 3DO 测量值可进一步将 AUC 提高至 0.917。3DO+人口统计学模型与 BMI 模型之间的整体综合鉴别改善为 0.290(p<0.0001),净重新分类改善为 0.214(p<0.0001)。

结论

从易于获得的 3DO 扫描中调整人口统计学数据得出的体型测量值比人口统计学数据和/或 BMI 单独预测 MetS 更好。当使用 3DO 扫描时,该人群的风险分类增加了 29%。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验