Leong Lambert T, Wong Michael C, Liu Yong E, Glaser Yannik, Quon Brandon K, Kelly Nisa N, Cataldi Devon, Sadowski Peter, Heymsfield Steven B, Shepherd John A
Molecular Bioscience and Bioengineering at University of Hawaii, Honolulu, HI, USA.
Department of Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA.
Commun Med (Lond). 2024 Jan 30;4(1):13. doi: 10.1038/s43856-024-00434-w.
Body shape, an intuitive health indicator, is deterministically driven by body composition. We developed and validated a deep learning model that generates accurate dual-energy X-ray absorptiometry (DXA) scans from three-dimensional optical body scans (3DO), enabling compositional analysis of the whole body and specified subregions. Previous works on generative medical imaging models lack quantitative validation and only report quality metrics.
Our model was self-supervised pretrained on two large clinical DXA datasets and fine-tuned using the Shape Up! Adults study dataset. Model-predicted scans from a holdout test set were evaluated using clinical commercial DXA software for compositional accuracy.
Predicted DXA scans achieve R of 0.73, 0.89, and 0.99 and RMSEs of 5.32, 6.56, and 4.15 kg for total fat mass (FM), fat-free mass (FFM), and total mass, respectively. Custom subregion analysis results in Rs of 0.70-0.89 for left and right thigh composition. We demonstrate the ability of models to produce quantitatively accurate visualizations of soft tissue and bone, confirming a strong relationship between body shape and composition.
This work highlights the potential of generative models in medical imaging and reinforces the importance of quantitative validation for assessing their clinical utility.
身体形态是一种直观的健康指标,由身体成分决定。我们开发并验证了一种深度学习模型,该模型可从三维光学身体扫描(3DO)生成准确的双能X线吸收测定法(DXA)扫描,从而实现对全身和特定子区域的成分分析。以往关于生成式医学成像模型的研究缺乏定量验证,仅报告质量指标。
我们的模型在两个大型临床DXA数据集上进行自监督预训练,并使用“塑造成年人”研究数据集进行微调。使用临床商业DXA软件评估来自保留测试集的模型预测扫描的成分准确性。
预测的DXA扫描对于总脂肪量(FM)、去脂体重(FFM)和总体重的相关系数R分别为0.73、0.89和0.99,均方根误差(RMSE)分别为5.32、6.56和4.15千克。自定义子区域分析得出左右大腿成分的相关系数R在0.70至0.89之间。我们展示了模型生成软组织和骨骼定量准确可视化的能力,证实了身体形态与成分之间的密切关系。
这项工作突出了生成模型在医学成像中的潜力,并强化了定量验证对于评估其临床效用的重要性。