Suppr超能文献

基于深度学习的色素征检测在分析和诊断色素性视网膜炎中的应用。

Deep Learning-Based Detection of Pigment Signs for Analysis and Diagnosis of Retinitis Pigmentosa.

机构信息

Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea.

出版信息

Sensors (Basel). 2020 Jun 18;20(12):3454. doi: 10.3390/s20123454.

Abstract

Ophthalmological analysis plays a vital role in the diagnosis of various eye diseases, such as glaucoma, retinitis pigmentosa (RP), and diabetic and hypertensive retinopathy. RP is a genetic retinal disorder that leads to progressive vision degeneration and initially causes night blindness. Currently, the most commonly applied method for diagnosing retinal diseases is optical coherence tomography (OCT)-based disease analysis. In contrast, fundus imaging-based disease diagnosis is considered a low-cost diagnostic solution for retinal diseases. This study focuses on the detection of RP from the fundus image, which is a crucial task because of the low quality of fundus images and non-cooperative image acquisition conditions. Automatic detection of pigment signs in fundus images can help ophthalmologists and medical practitioners in diagnosing and analyzing RP disorders. To accurately segment pigment signs for diagnostic purposes, we present an automatic RP segmentation network (RPS-Net), which is a specifically designed deep learning-based semantic segmentation network to accurately detect and segment the pigment signs with fewer trainable parameters. Compared with the conventional deep learning methods, the proposed method applies a feature enhancement policy through multiple dense connections between the convolutional layers, which enables the network to discriminate between normal and diseased eyes, and accurately segment the diseased area from the background. Because pigment spots can be very small and consist of very few pixels, the RPS-Net provides fine segmentation, even in the case of degraded images, by importing high-frequency information from the preceding layers through concatenation inside and outside the encoder-decoder. To evaluate the proposed RPS-Net, experiments were performed based on 4-fold cross-validation using the publicly available Retinal Images for Pigment Signs (RIPS) dataset for detection and segmentation of retinal pigments. Experimental results show that RPS-Net achieved superior segmentation performance for RP diagnosis, compared with the state-of-the-art methods.

摘要

眼科分析在诊断各种眼病(如青光眼、色素性视网膜炎(RP)和糖尿病性及高血压性视网膜病变)中起着至关重要的作用。RP 是一种遗传性视网膜疾病,会导致视力逐渐退化,最初表现为夜盲症。目前,诊断视网膜疾病最常用的方法是基于光学相干断层扫描(OCT)的疾病分析。相比之下,基于眼底图像的疾病诊断被认为是一种用于视网膜疾病的低成本诊断解决方案。本研究侧重于从眼底图像中检测 RP,这是一项至关重要的任务,因为眼底图像质量低且采集条件不理想。自动检测眼底图像中的色素标志有助于眼科医生和医疗从业者诊断和分析 RP 疾病。为了准确地对色素标志进行分割以用于诊断,我们提出了一种自动 RP 分割网络(RPS-Net),这是一种专门设计的基于深度学习的语义分割网络,可使用较少的可训练参数准确地检测和分割色素标志。与传统的深度学习方法相比,所提出的方法通过卷积层之间的多次密集连接应用了特征增强策略,这使得网络能够区分正常眼和患病眼,并准确地从背景中分割出患病区域。由于色素斑点可能非常小且只包含很少的像素,因此 RPS-Net 通过在编码器-解码器内部和外部通过连接来导入来自前层的高频信息,从而即使在图像质量下降的情况下也能提供精细的分割。为了评估所提出的 RPS-Net,我们使用公开的用于色素标志检测和分割的视网膜图像(RIPS)数据集,通过 4 折交叉验证进行了实验。实验结果表明,与最先进的方法相比,RPS-Net 在 RP 诊断方面实现了卓越的分割性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a48/7349531/26b4d8fc3e89/sensors-20-03454-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验