Suppr超能文献

观察者间勾画差异对非小细胞肺癌放射组学特征稳健性的影响。

The impact of inter-observer variation in delineation on robustness of radiomics features in non-small cell lung cancer.

机构信息

Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre Building, 305 Grattan Street, Melbourne, VIC, 3000, Australia.

Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia.

出版信息

Sci Rep. 2022 Jul 27;12(1):12822. doi: 10.1038/s41598-022-16520-9.

Abstract

Artificial intelligence and radiomics have the potential to revolutionise cancer prognostication and personalised treatment. Manual outlining of the tumour volume for extraction of radiomics features (RF) is a subjective process. This study investigates robustness of RF to inter-observer variation (IOV) in contouring in lung cancer. We utilised two public imaging datasets: 'NSCLC-Radiomics' and 'NSCLC-Radiomics-Interobserver1' ('Interobserver'). For 'NSCLC-Radiomics', we created an additional set of manual contours for 92 patients, and for 'Interobserver', there were five manual and five semi-automated contours available for 20 patients. Dice coefficients (DC) were calculated for contours. 1113 RF were extracted including shape, first order and texture features. Intraclass correlation coefficient (ICC) was computed to assess robustness of RF to IOV. Cox regression analysis for overall survival (OS) was performed with a previously published radiomics signature. The median DC ranged from 0.81 ('NSCLC-Radiomics') to 0.85 ('Interobserver'-semi-automated). The median ICC for the 'NSCLC-Radiomics', 'Interobserver' (manual) and 'Interobserver' (semi-automated) were 0.90, 0.88 and 0.93 respectively. The ICC varied by feature type and was lower for first order and gray level co-occurrence matrix (GLCM) features. Shape features had a lower median ICC in the 'NSCLC-Radiomics' dataset compared to the 'Interobserver' dataset. Survival analysis showed similar separation of curves for three of four RF apart from 'original_shape_Compactness2', a feature with low ICC (0.61). The majority of RF are robust to IOV, with first order, GLCM and shape features being the least robust. Semi-automated contouring improves feature stability. Decreased robustness of a feature is significant as it may impact upon the features' prognostic capability.

摘要

人工智能和放射组学有可能彻底改变癌症预后和个性化治疗。手动勾勒肿瘤体积以提取放射组学特征(RF)是一个主观的过程。本研究调查了 RF 对肺癌轮廓勾画中观察者间变异(IOV)的稳健性。我们利用了两个公共成像数据集:'NSCLC-Radiomics'和'NSCLC-Radiomics-Interobserver1'('Interobserver')。对于'NSCLC-Radiomics',我们为 92 名患者创建了另一组手动轮廓,对于'Interobserver',有 20 名患者的 5 个手动和 5 个半自动轮廓可用。计算了轮廓的 Dice 系数(DC)。提取了包括形状、一阶和纹理特征在内的 1113 个 RF。计算了组内相关系数(ICC)以评估 RF 对 IOV 的稳健性。使用之前发表的放射组学签名对总生存(OS)进行 Cox 回归分析。'NSCLC-Radiomics'的中位数 DC 范围为 0.81('NSCLC-Radiomics')至 0.85('Interobserver'-半自动)。'NSCLC-Radiomics'、'Interobserver'(手动)和'Interobserver'(半自动)的中位数 ICC 分别为 0.90、0.88 和 0.93。ICC 因特征类型而异,一阶和灰度共生矩阵(GLCM)特征的 ICC 较低。形状特征在'NSCLC-Radiomics'数据集与'Interobserver'数据集相比,ICC 中位数较低。生存分析显示,除了 ICC 较低(0.61)的特征'原始形状_紧凑度 2'外,其他三个 RF 的曲线分离相似。大多数 RF 对 IOV 具有稳健性,一阶、GLCM 和形状特征的稳健性最低。半自动轮廓勾画提高了特征的稳定性。特征稳健性降低具有重要意义,因为它可能会影响特征的预后能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54d7/9329346/1f587b9fc4c4/41598_2022_16520_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验