Suppr超能文献

放射组学预测肺癌机器人立体定向体部放射治疗后放射性肺损伤和肿瘤学结局:来自两个独立机构的结果。

Radiomics for prediction of radiation-induced lung injury and oncologic outcome after robotic stereotactic body radiotherapy of lung cancer: results from two independent institutions.

机构信息

Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.

Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Cologne, Germany.

出版信息

Radiat Oncol. 2021 Apr 16;16(1):74. doi: 10.1186/s13014-021-01805-6.

Abstract

OBJECTIVES

To generate and validate state-of-the-art radiomics models for prediction of radiation-induced lung injury and oncologic outcome in non-small cell lung cancer (NSCLC) patients treated with robotic stereotactic body radiation therapy (SBRT).

METHODS

Radiomics models were generated from the planning CT images of 110 patients with primary, inoperable stage I/IIa NSCLC who were treated with robotic SBRT using a risk-adapted fractionation scheme at the University Hospital Cologne (training cohort). In total, 199 uncorrelated radiomic features fulfilling the standards of the Image Biomarker Standardization Initiative (IBSI) were extracted from the outlined gross tumor volume (GTV). Regularized models (Coxnet and Gradient Boost) for the development of local lung fibrosis (LF), local tumor control (LC), disease-free survival (DFS) and overall survival (OS) were built from either clinical/ dosimetric variables, radiomics features or a combination thereof and validated in a comparable cohort of 71 patients treated by robotic SBRT at the Radiosurgery Center in Northern Germany (test cohort).

RESULTS

Oncologic outcome did not differ significantly between the two cohorts (OS at 36 months 56% vs. 43%, p = 0.065; median DFS 25 months vs. 23 months, p = 0.43; LC at 36 months 90% vs. 93%, p = 0.197). Local lung fibrosis developed in 33% vs. 35% of the patients (p = 0.75), all events were observed within 36 months. In the training cohort, radiomics models were able to predict OS, DFS and LC (concordance index 0.77-0.99, p < 0.005), but failed to generalize to the test cohort. In opposite, models for the development of lung fibrosis could be generated from both clinical/dosimetric factors and radiomic features or combinations thereof, which were both predictive in the training set (concordance index 0.71- 0.79, p < 0.005) and in the test set (concordance index 0.59-0.66, p < 0.05). The best performing model included 4 clinical/dosimetric variables (GTV-D, PTV-D, Lung-D, age) and 7 radiomic features (concordance index 0.66, p < 0.03).

CONCLUSION

Despite the obvious difficulties in generalizing predictive models for oncologic outcome and toxicity, this analysis shows that carefully designed radiomics models for prediction of local lung fibrosis after SBRT of early stage lung cancer perform well across different institutions.

摘要

目的

为接受机器人立体定向体部放射治疗(SBRT)的非小细胞肺癌(NSCLC)患者预测放射性肺损伤和肿瘤学结果,生成并验证最先进的放射组学模型。

方法

使用风险适应分割方案,从在德国科隆大学医院(培训队列)接受机器人 SBRT 治疗的 110 名无法手术的 I/IIa 期原发性非小细胞肺癌患者的计划 CT 图像中生成放射组学模型。从勾画的大体肿瘤体积(GTV)中提取了 199 个符合图像生物标志物标准化倡议(IBSI)标准的不相关放射组学特征。从临床/剂量学变量、放射组学特征或两者的组合中为局部肺纤维化(LF)、局部肿瘤控制(LC)、无病生存率(DFS)和总生存率(OS)的发展构建了正则化模型(Coxnet 和梯度提升),并在德国北部放射外科中心接受机器人 SBRT 治疗的 71 名可比患者的队列(测试队列)中进行了验证。

结果

两个队列的肿瘤学结果无显著差异(36 个月时 OS 分别为 56%和 43%,p=0.065;中位 DFS 分别为 25 个月和 23 个月,p=0.43;36 个月时 LC 分别为 90%和 93%,p=0.197)。33%的患者发生了局部肺纤维化,而 35%的患者发生了局部肺纤维化(p=0.75),所有事件均发生在 36 个月内。在训练队列中,放射组学模型能够预测 OS、DFS 和 LC(一致性指数 0.77-0.99,p<0.005),但无法推广到测试队列。相反,能够从临床/剂量学因素和放射组学特征或其组合中生成用于肺纤维化发展的模型,这些模型在训练集(一致性指数 0.71-0.79,p<0.005)和测试集(一致性指数 0.59-0.66,p<0.05)中均具有预测性。表现最好的模型包括 4 个临床/剂量学变量(GTV-D、PTV-D、肺-D、年龄)和 7 个放射组学特征(一致性指数 0.66,p<0.03)。

结论

尽管在将预测肿瘤学结果和毒性的模型进行泛化方面存在明显困难,但本分析表明,针对早期肺癌 SBRT 后预测局部肺纤维化的精心设计的放射组学模型在不同机构中表现良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5711/8052812/97703616ed91/13014_2021_1805_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验