Albiol Alberto, Albiol Francisco, Paredes Roberto, Plasencia-Martínez Juana María, Blanco Barrio Ana, Santos José M García, Tortajada Salvador, González Montaño Victoria M, Rodríguez Godoy Clara E, Fernández Gómez Saray, Oliver-Garcia Elena, de la Iglesia Vayá María, Márquez Pérez Francisca L, Rayo Madrid Juan I
ETSI Telecomunicación, iTeam Institute, Universitat Politècnica València, Camino de Vera S/N, 46022, València, Spain.
Instituto Física Corpuscular, National Research Council (CSIC)-Universitat València, València, Spain.
Insights Imaging. 2022 Jul 28;13(1):122. doi: 10.1186/s13244-022-01250-3.
The role of chest radiography in COVID-19 disease has changed since the beginning of the pandemic from a diagnostic tool when microbiological resources were scarce to a different one focused on detecting and monitoring COVID-19 lung involvement. Using chest radiographs, early detection of the disease is still helpful in resource-poor environments. However, the sensitivity of a chest radiograph for diagnosing COVID-19 is modest, even for expert radiologists. In this paper, the performance of a deep learning algorithm on the first clinical encounter is evaluated and compared with a group of radiologists with different years of experience.
The algorithm uses an ensemble of four deep convolutional networks, Ensemble4Covid, trained to detect COVID-19 on frontal chest radiographs. The algorithm was tested using images from the first clinical encounter of positive and negative cases. Its performance was compared with five radiologists on a smaller test subset of patients. The algorithm's performance was also validated using the public dataset COVIDx.
Compared to the consensus of five radiologists, the Ensemble4Covid model achieved an AUC of 0.85, whereas the radiologists achieved an AUC of 0.71. Compared with other state-of-the-art models, the performance of a single model of our ensemble achieved nonsignificant differences in the public dataset COVIDx.
The results show that the use of images from the first clinical encounter significantly drops the detection performance of COVID-19. The performance of our Ensemble4Covid under these challenging conditions is considerably higher compared to a consensus of five radiologists. Artificial intelligence can be used for the fast diagnosis of COVID-19.
自疫情开始以来,胸部X光检查在新冠病毒疾病中的作用已经发生了变化,从微生物资源稀缺时的诊断工具,转变为专注于检测和监测新冠病毒肺部受累情况的不同工具。在资源匮乏的环境中,利用胸部X光片进行疾病的早期检测仍然很有帮助。然而,即使对于专业放射科医生来说,胸部X光片诊断新冠病毒的敏感性也一般。本文评估了一种深度学习算法在首次临床接诊时的表现,并与一组具有不同工作年限的放射科医生进行了比较。
该算法使用四个深度卷积网络的集成(Ensemble4Covid),经过训练可在胸部正位X光片上检测新冠病毒。该算法使用阳性和阴性病例首次临床接诊时的图像进行测试。在一个较小的患者测试子集中,将其表现与五位放射科医生的表现进行了比较。该算法的表现还使用公共数据集COVIDx进行了验证。
与五位放射科医生的共识相比,Ensemble4Covid模型的曲线下面积(AUC)为0.85,而放射科医生的AUC为0.71。与其他最先进的模型相比,我们集成中的单个模型在公共数据集COVIDx中的表现差异不显著。
结果表明,使用首次临床接诊时的图像会显著降低新冠病毒的检测性能。在这些具有挑战性的条件下,我们的Ensemble4Covid的表现相比五位放射科医生的共识要高得多。人工智能可用于快速诊断新冠病毒。