Suppr超能文献

基于忆阻器神经网络的动态 AES 密码系统。

A dynamic AES cryptosystem based on memristive neural network.

机构信息

State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.

Beijing Microelectronics Technology Institute (BMTI), Beijing, 10076, People's Republic of China.

出版信息

Sci Rep. 2022 Jul 28;12(1):12983. doi: 10.1038/s41598-022-13286-y.

Abstract

This paper proposes an advanced encryption standard (AES) cryptosystem based on memristive neural network. A memristive chaotic neural network is constructed by using the nonlinear characteristics of a memristor. A chaotic sequence, which is sensitive to initial values and has good random characteristics, is used as the initial key of AES grouping to realize "one-time-one-secret" dynamic encryption. In addition, the Rivest-Shamir-Adleman (RSA) algorithm is applied to encrypt the initial values of the parameters of the memristive neural network. The results show that the proposed algorithm has higher security, a larger key space and stronger robustness than conventional AES. The proposed algorithm can effectively resist initial key-fixed and exhaustive attacks. Furthermore, the impact of device variability on the memristive neural network is analyzed, and a circuit architecture is proposed.

摘要

本文提出了一种基于忆阻神经网络的高级加密标准(AES)密码系统。利用忆阻器的非线性特性,构建了忆阻混沌神经网络。将混沌序列作为 AES 分组的初始密钥,该混沌序列具有初值敏感性和良好的随机性,实现了“一次一密”的动态加密。此外,还应用里维斯特-沙米尔-阿德曼(RSA)算法对忆阻神经网络参数的初始值进行加密。结果表明,与传统 AES 相比,该算法具有更高的安全性、更大的密钥空间和更强的鲁棒性。该算法可以有效抵抗初始密钥固定和穷举攻击。此外,还分析了器件变异性对忆阻神经网络的影响,并提出了一种电路结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a942/9334587/c4e86f3d06ee/41598_2022_13286_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验