Suppr超能文献

利用深度学习和全切片图像上的组织病理学特征预测肺癌的致癌基因突变。

Predicting oncogene mutations of lung cancer using deep learning and histopathologic features on whole-slide images.

作者信息

Tomita Naofumi, Tafe Laura J, Suriawinata Arief A, Tsongalis Gregory J, Nasir-Moin Mustafa, Dragnev Konstantin, Hassanpour Saeed

机构信息

Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.

Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.

出版信息

Transl Oncol. 2022 Oct;24:101494. doi: 10.1016/j.tranon.2022.101494. Epub 2022 Jul 26.

Abstract

Lung cancer is a leading cause of death in both men and women globally. The recent development of tumor molecular profiling has opened opportunities for targeted therapies for lung adenocarcinoma (LUAD) patients. However, the lack of access to molecular profiling or cost and turnaround time associated with it could hinder oncologists' willingness to order frequent molecular tests, limiting potential benefits from precision medicine. In this study, we developed a weakly supervised deep learning model for predicting somatic mutations of LUAD patients based on formalin-fixed paraffin-embedded (FFPE) whole-slide images (WSIs) using LUAD subtypes-related histological features and recent advances in computer vision. Our study was performed on a total of 747 hematoxylin and eosin (H&E) stained FFPE LUAD WSIs and the genetic mutation data of 232 patients who were treated at Dartmouth-Hitchcock Medical Center (DHMC). We developed our convolutional neural network-based models to analyze whole slides and predict five major genetic mutations, i.e., BRAF, EGFR, KRAS, STK11, and TP53. We additionally used 111 cases from the LUAD dataset of the CPTAC-3 study for external validation. Our model achieved an AUROC of 0.799 (95% CI: 0.686-0.904) and 0.686 (95% CI: 0.620-0.752) for predicting EGFR genetic mutations on the DHMC and CPTAC-3 test sets, respectively. Predicting TP53 genetic mutations also showed promising outcomes. Our results demonstrated that H&E stained FFPE LUAD whole slides could be utilized to predict oncogene mutations, such as EGFR, indicating that somatic mutations could present subtle morphological characteristics in histology slides, where deep learning-based feature extractors can learn such latent information.

摘要

肺癌是全球男性和女性的主要死因。肿瘤分子谱分析的最新进展为肺腺癌(LUAD)患者的靶向治疗带来了机遇。然而,无法进行分子谱分析或与之相关的成本及周转时间可能会阻碍肿瘤学家频繁进行分子检测的意愿,从而限制精准医学的潜在益处。在本研究中,我们基于福尔马林固定石蜡包埋(FFPE)全切片图像(WSIs),利用与LUAD亚型相关的组织学特征和计算机视觉的最新进展,开发了一种弱监督深度学习模型来预测LUAD患者的体细胞突变。我们的研究共使用了747张苏木精和伊红(H&E)染色的FFPE LUAD WSIs以及在达特茅斯-希区柯克医疗中心(DHMC)接受治疗的232例患者的基因突变数据。我们开发了基于卷积神经网络的模型来分析全切片并预测五种主要基因突变,即BRAF、EGFR、KRAS、STK11和TP53。我们还使用了CPTAC-3研究的LUAD数据集中的111例病例进行外部验证。我们的模型在DHMC和CPTAC-3测试集上预测EGFR基因突变的AUROC分别为0.799(95%CI:0.686 - 0.904)和0.686(95%CI:0.620 - 0.752)。预测TP53基因突变也显示出有前景的结果。我们的结果表明,H&E染色的FFPE LUAD全切片可用于预测癌基因突变,如EGFR,这表明体细胞突变可能在组织学切片中呈现细微的形态特征,基于深度学习的特征提取器可以学习到此类潜在信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77d9/9334329/1af90adbbb3b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验