Suppr超能文献

循环生成对抗网络模型用于乳腺癌数据的病理医疗保健任务分类。

Cyclic GAN Model to Classify Breast Cancer Data for Pathological Healthcare Task.

机构信息

School of Computer Applications, Lovely Professional University, Phagwara, Punjab, India.

University of Technology and Applied Science Ibri, Oman.

出版信息

Biomed Res Int. 2022 Jul 21;2022:6336700. doi: 10.1155/2022/6336700. eCollection 2022.

Abstract

An algorithm framework based on CycleGAN and an upgraded dual-path network (DPN) is suggested to address the difficulties of uneven staining in pathological pictures and difficulty of discriminating benign from malignant cells. CycleGAN is used for color normalization in pathological pictures to tackle the problem of uneven staining. However, the resultant detection model is ineffective. By overlapping the images, the DPN uses the addition of small convolution, deconvolution, and attention mechanisms to enhance the model's ability to classify the texture features of pathological images on the BreaKHis dataset. The parameters that are taken into consideration for measuring the accuracy of the proposed model are false-positive rate, false-negative rate, recall, precision, and 1 score. Several experiments are carried out over the selected parameters, such as making comparisons between benign and malignant classification accuracy under different normalization methods, comparison of accuracy of image level and patient level using different CNN models, correlating the correctness of DPN68-A network with different deep learning models and other classification algorithms at all magnifications. The results thus obtained have proved that the proposed model DPN68-A network can effectively classify the benign and malignant breast cancer pathological images at various magnifications. The proposed model also is able to better assist the pathologists in diagnosing the patients by synthesizing the images of different magnifications in the clinical stage.

摘要

提出了一种基于 CycleGAN 和升级的双通道网络(DPN)的算法框架,以解决病理图像染色不均匀和良恶性细胞难以区分的问题。CycleGAN 用于病理图像的颜色归一化,以解决染色不均匀的问题。但是,得到的检测模型效果不佳。DPN 通过重叠图像,使用小卷积、反卷积和注意力机制的叠加来增强模型在 BreaKHis 数据集上对病理图像纹理特征进行分类的能力。用于衡量所提出模型准确性的参数包括假阳性率、假阴性率、召回率、精度和 1 分。在选定的参数下进行了多项实验,例如比较不同归一化方法下良性和恶性分类准确性、使用不同 CNN 模型进行图像级和患者级准确性比较、将 DPN68-A 网络的正确性与不同的深度学习模型和其他分类算法在所有放大倍数下的相关性。所得结果证明了所提出的 DPN68-A 网络模型能够有效地对不同放大倍数的良性和恶性乳腺癌病理图像进行分类。该模型还能够通过在临床阶段合成不同放大倍数的图像,更好地协助病理学家对患者进行诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9b1/9334078/7134e3cd1e9f/BMRI2022-6336700.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验